DOI QR코드

DOI QR Code

Effect of Dietary Supplementation with Bitter Melon on Lipids and Hepatic Enzyme Levels in Streptozotocin Induced Diabetic Rats

여주열매 첨가식이가 당뇨 흰쥐의 지질과 항산화효소 수준에 미치는 영향

  • Kim, Myung-Wha (Dept. of Food and Nutrition, Duksung Women's University)
  • 김명화 (덕성여자대학교 식품영양학과)
  • Received : 2014.11.24
  • Accepted : 2014.12.20
  • Published : 2014.12.31

Abstract

This study examined the effect of Momordica charantia L. (bitter melon: BM) on lipid and hepatic antioxidative enzyme levels in diabetic rats. Diabetes mellitus was induced in male Sprague-Dawley rats by injection of streptozotocin (STZ), and rats were fed for 4 weeks with experimental groups divided into four groups: a normal control group, STZ-control and STZ-BM 5% & STZ-BM 10% treated groups. Levels of free fatty acids (FFA), high-density lipoprotein cholesterol (HDL-chol), triglycerides (TG) in plasma and malondialdehyde (MDA) & protein in liver, catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), and xanthine oxidase (XOD) were measured in liver cytosol. Level of HDL-chol significantly increased in the STZ-BM 5% diabetic group. TG & FFA levels were significantly higher in all diabetic groups compared to the control group. MDA and protein levels were significantly higher in the STZ-BM 5% group compared to all other experimental group. CAT level was higher in the supplementary group with BM compared to the STZ-control group, although the difference was not significantly different. SOD level was not significant in any experimental groups. GST level was significantly higher in the BM-treated groups compared to the STZ-control group. XOD level was significantly lower in the BM 5% group and significantly decreased in all experimental groups. These results show that supplementation of BM fruit powder may have beneficial effects on diabetic complications and damage caused by oxidative stress.

본 연구에서는 여주의 항당뇨 효과를 검색하기 위한 연구로 실험군은 정상 대조군과 당뇨 실험군으로 나누어, 당뇨 실험군은 당뇨 대조군과 여주열매 분말을 5%와 10%를 각각 식이에 첨가하여 4개군으로 실험하였다. 실험동물은 Sprague-Dawley계 수컷으로 STZ으로 당뇨를 유발한 흰쥐에게 4 주간의 해당식이를 공급하여 혈장의 유리지방산, HDL-콜레스테롤 및 중성지방, 간의 MDA와 단백질, 간의 시토졸에서 CAT, SOD, GST 및 XOD의 항산화효소 수준을 분석하여 다음과 같은 결과를 얻었다. 혈장 유리지방산 수준은 정상 대조군에 비해 당뇨 대조군에서 유의적으로 높은 수준이었으나, 당뇨 실험군 간에는 유의적인 차이는 아니었다. HDL-콜레스테롤 수준은 정상 대조군과 당뇨 대조군에서는 유의적인 차이를 보이지 않았으나, BM-5%군에서는 정상 대조군보다 유의적으로 높은 수준이었다. 중성지방 수준은 정상 대조군에 비해 당뇨 대조군에서 높게 유의적인 차이를 보였으나, 당뇨 실험군 간에는 유의적인 차이를 보이지 않았다. 간의 MDA 수준은 정상 대조군에 비해 당뇨 대조군 사이에는 유의적인 수준 차이를 보이지 않았으나, BM-10%군에서는 MDA 수준이 유의적으로 높은 수준이었다. 단백질 수준은 정상 대조군과 당뇨 대조군 사이에 유의적인 차이를 보였고, 당뇨 대조군에 비해 BM-5%군에서는 유의적인 차이는 아니었으나, BM-10%군에서 유의적으로 높은 수준이었다. CAT 수준은 정상 대조군과 당뇨 대조군에서 유의적이었으나, 당뇨 실험군 사이에는 유의적 차이를 보이지 않았다. SOD 수준은 정상 대조군과 당뇨 대조군 사이에 유의적인 차이를 보이지 않았고, 여주 첨가 시 당뇨 실험군 간에도 유의적인 차이를 보이지 않았다. GST 수준은 정상 대조군보다 당뇨 대조군 수준이 유의적으로 낮았고, 당뇨 대조군에 비해 BM-5%와 BM-10%군 모두에서 높은 수준으로 유의적인 차이를 보였다. XOD의 수준은 정상 대조군과 당뇨 대조군 사이에는 유의적인 차이를 보이지 않았고, BM-10%군에서는 수치상 낮아지는 수준이었으나, BM-5%군에서만 유의적으로 낮은 수준이었다. 이상의 연구결과, 여주열매 분말을 식이로 첨가하였을 때 당뇨 시 혈장 중성지방과 유리지방산 수준에는 차이를 보이지 않았고, 간 조직의 단백질과 MDA 수준은 높아지는 경향이었다. BM-5%군에서는 HDL-콜레스테롤과 GST 수준이 높아졌고, XOD 수준이 가장 낮아져 여주 첨가에 따른 양적인 차이를 보였다. 여주는 당뇨로 인한 산화적 스트레스를 줄이며, 당뇨 예방 및 치료를 위한 식사요법에 효과적인 식품으로 사료된다.

Keywords

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105: 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  2. Bergmeyer HU, Gawehn K, Grassl M (1974) In the Methods of Enzymatic Analysis (Bergmeter HU ed.). 2nd ed. Vol. 1. Academic Press Inc., New York. p 521-522.
  3. Betteridge J (2001) Dyslipidaemia and diabetes. Prac Diabetes Intern 18: 201-207. https://doi.org/10.1002/pdi.231
  4. Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology 43: 83-116. https://doi.org/10.1146/annurev.pp.43.060192.000503
  5. Cefalu WT, Ye J, Wang ZQ (2008) Efficacy of dietary supplementation with botanicals on carbohydrate metabolism in humans. Endocr Metab Immune Disord Drug Targets 8: 78-81. https://doi.org/10.2174/187153008784534376
  6. Cha JY, Jin JS, Cho YS (2011) Biological activity of methanolic extract from Ganoderma lucidum, Momordica charantia, Fagopyrum tatricum, and their mixtures. J Life Science 21: 1016-1024. https://doi.org/10.5352/JLS.2011.21.7.1016
  7. Chan KM, Chao J, Proctor GB, Garrett JR, Shori DK, Anderson LC (1993) Tissue kallikrein and tonin levels in submandibular glands of STZ-induced diabetic rats and the effects of insulin. Diabetes 42: 113-117. https://doi.org/10.2337/diab.42.1.113
  8. Choi JW, Sohn KH, Kim SH (1991) Effects of nicotinamide on the serum lipid composition in streptozotocin-induced diabetic rats. J Korean Soc Food Nutr 20: 306-311.
  9. Durrington PN, Stephens WP (1980) The effects of treatment with insulin on seru high-density-lipoprotein cholesterol in rats with streptozotocin-induced diabetes. Clinical Science 59: 71-74. https://doi.org/10.1042/cs0590071
  10. Farber JL (1994) Mechanisms of cell injury by activated oxygen species. Environ Health Perspect 102(Suppl 10): 7-24. https://doi.org/10.1289/ehp.94102s67
  11. Finely PR, Schifman RB, Williams RJ, Luchti DA (1978) Cholesterol in high-density lipoprotein: Use of $Mg^{2+}$/dextran sulfate in its measurement. J Clin Chem 24: 931-933.
  12. Giegel JL, Ham AB, Clema W (1975) Serum triglyceride determined colorimetry with and enzyme that produces hydrogen peroxide. Clin Chem 21: 1575-1581.
  13. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF, Shulman GI (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48: 1270-1274. https://doi.org/10.2337/diabetes.48.6.1270
  14. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-stransferases: The first enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130-7139.
  15. Hamissou M, Smith AC, Carter Jr JE, Triplett II JK (2013) Antioxidative properties of bitter gourd (Momordica charantia) and zucchini (Cucurbita pepo). Emir J Food Agric 25: 641-647. https://doi.org/10.9755/ejfa.v25i9.15978
  16. Hirano T (2014) Abnormal lipoprotein metabolism in diabetic nephropathy. Clin Exp Nephrol 18: 206-209. https://doi.org/10.1007/s10157-013-0880-y
  17. Hunt JV, Dean RT, Wolff SP (1998) Hydroxyl tadical production and autoxidative glycosylation. J Biochem 256: 205-212.
  18. Jang JH (2012) Social service information for dementia patients. J Korean Diabetes 13: 157-161. https://doi.org/10.4093/jkd.2012.13.3.157
  19. Jeong JH, Lee JW, Kim KS, Kim JS, Han SN, Yu CY, Lee JK, Kwon YS, Lim MJ (2010) Antioxidant and antimicrobial activities of extracts from a medicinal plant, sea buckthorn. J Korean Soc Appl Biol Chem 53: 33-38.
  20. Joseph B, Jini D (2013) Antidiabetic effects of Momordia charantia (bitter melon) and its medicinal potency. Asian Pac J Trop Dis 3: 93-102. https://doi.org/10.1016/S2222-1808(13)60052-3
  21. Junod A, Lambert AE, Orci L, Picet R, Gonet AE, Renold AE (1967) Studies of the diabetogenic action of streptozotocin. Proc Soc Exp Biol Med 126: 201-205. https://doi.org/10.3181/00379727-126-32401
  22. Kaefer M, De Carvalho JA, Piva SJ, da Silva DB, Becker AM, Sangoi MB, Almeida TC, Hermes CL, Coelho AC, Tonello R, Moreira AP, Garcia SC, Moretto MB, Moresco RN (2012) Plasma malondialdehyde levels and risk factors for the development of chronic complications in type 2 diabetic patients on insulin therapy. Clin Lab 58: 973-978.
  23. Kanai I, Kanai M (1983) Compendium of the Clinical Inspection. 29th ed. Komoonsa, Seoul. p 467.
  24. Kim MW (2008) Effects of Salicornia herbacea L. supplementation on antioxidative enzyme activities in streptozotocin-induced diabetic rats. Korean J Nutr 41: 583-593.
  25. Kim MW (2013) Effect of bitter melon on plasma blood glucose and cholesterol levels in streptozotocin induced diabetic rats. J East Asian Soc Dietary Life 23: 704-712.
  26. Kim MW (2013) Effect of sea buckthorn leaves on hepatic enzyme levels in streptozotocin induced diabetic rats. J Korean Soc Food Sci Nutr 42: 40-45. https://doi.org/10.3746/jkfn.2013.42.1.040
  27. Korean diabetes association (2013) Diabetes fact sheet in Korea 2013. http://www.diabetes.or.kr/temp/diabetes_factsheet_2013111.pdf
  28. Kubola J, Siriamornpun S (2008) Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chemistry 110: 881-890. https://doi.org/10.1016/j.foodchem.2008.02.076
  29. Lee ES, Kum JY, Hwang YO, Tu OJ, Jo HB, Kim JH, Chae YZ (2012) Comparative study on antioxidant capacities and polyphenolic contents of commercially available cocoa-containing products. J Korean Soc Food Sci Nutr 41: 1356-1362. https://doi.org/10.3746/jkfn.2012.41.10.1356
  30. Lee YH, Kim DJ (2013) Diabetes risk score for Korean adults. J Korean Diabetes 14: 6-10. https://doi.org/10.4093/jkd.2013.14.1.6
  31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-275.
  32. Maklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 467-474.
  33. Malik ZA, Tabassum N, Sharma PL (2013) Attenuation of experimentally induced diabetic neuropathy in association with reduced oxidative-nitrosative stress by chronic administration of Momordica charantia. Advances Bioscience & Biotechnology 4: 356-363. https://doi.org/10.4236/abb.2013.43047
  34. Meena AK, Bansal P, Kumar S (2009) Plants-herbal wealth as a potential source of ayurvedic drugs. Asian Pac J Trop Med 4: 152-170.
  35. Mihara M, Uchiyama M (1978) Determination of malondialdehyde precursor in issue by thiobarbituric acid test. Anal Biochem 86: 271-278. https://doi.org/10.1016/0003-2697(78)90342-1
  36. Moore CJ, Shao CH, Nagai R, Kutty S, Singh J, Bidasee KR (2013) Malondialdehyde and 4-hydroxynonenal adducts are not formed on cardiac ryanodine receptor (RyR2) and sarco (endo) plasmic reticulum $Ca^{2+}$-ATPase (SERCA2) in diabetes. Mol Cell Bioche 376: 121-135. https://doi.org/10.1007/s11010-013-1558-1
  37. National Health Insurance Corporation (2010) Health Insurance Statistics Yearbook. Seoul: National Health Insurance Corporation, 2010. http://www.nhic.or.kr/ Accessed Jul. 15, 2012.
  38. Nikkila EA, Kekki M (1973) Plasma triglyceride transport kinetics in diabetes mellitus. Metabolism 22: 1-22. https://doi.org/10.1016/0026-0495(73)90024-3
  39. Park SA (2013) Social welfare approach for the patient with diabetic nephropathy. J Korean Diabetes 14: 42-45. https://doi.org/10.4093/jkd.2013.14.1.42
  40. Park Y, Boo HO, Park YL, Cho DH, lee HH (2007) Antioxidant activity of Momordica charantia L. extracts. Korean J Medicinal Crop Sci 15: 56-61.
  41. Rashidi A, Kirkwood TB, Shanley DP (2009) Metabolic evolution suggests an explanation for the weakness of antioxidant defences in beta-cells. Mech Ageing Dev 130: 216-221. https://doi.org/10.1016/j.mad.2008.12.007
  42. Reeves PG (1997) Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127: 838-841. https://doi.org/10.1093/jn/127.5.838S
  43. Saggu S, Kumar R (2008) Effect of sea buckthorn leaf extracts on circulating energy fuel, lipid peroxidation and antioxidant parameters in rats during exposure to cold, hypoxia and restraint(C-H-R) stress and post stress recovery. Phytomedicine 15: 437-446. https://doi.org/10.1016/j.phymed.2007.11.002
  44. Silva VM, Vinagre CG, Dallan LA, Chacra AP, Maranhao RC (2014) Plasma lipids, lipoprotein metabolism and HDL lipid transfers are equally altered in metabolic syndrome and in type 2 diabetes. Lipids 49: 677-684. https://doi.org/10.1007/s11745-014-3899-2
  45. Singh A, Singh SP, Bamezai R (1998) Momordica charantia (bitter gourd) peel, pulp, seed and whole fruit extract inhibits mouse skin papillomagenesis. Toxicology Letters 94: 37-46. https://doi.org/10.1016/S0378-4274(97)00099-4
  46. Suryakumar G, Gupta A (2011) Medicinal and therapeutic potential of sea buckthorn(Hippophae rhamnoides L.). J Ethnopharmacol 138: 268-278. https://doi.org/10.1016/j.jep.2011.09.024
  47. Tomita T, Yamasaki Y, Kubota M, Tohdo R, Katsura M, Ikeda M, Nakahara I, Shiba Y, Matsuhisa M, Hori M (1998) High plasma free fatty acids decrease splanchnic glucose uptake in patients with non-insulin-diabetes mellitus. Endocr J 45: 165-173. https://doi.org/10.1507/endocrj.45.165
  48. Tripathi UN, Chandra D (2009) The plant extracts of Momordica charantia and Trigonella foenum graecum have antioxidant and anti-hyperglycemic properties for cardiac tissue during diabetes mellitus. Oxid Med Cell Longev 2: 290-296. https://doi.org/10.4161/oxim.2.5.9529
  49. USDA(Agricultural Research Service United States Department of Agriculture (2014) National Nutrient Database for Standard Reference Release 27. http://ndb.nal.usda.gov/ndb/foods/show/2867?fg=&man=&lfacet=&format=&count=&max=25&offset=&sort=&qlookup=bitter
  50. Vijayaraghavan K (2010) Treatment of dyslipidemia in patients with type 2 diabetes. Lipids Health Dis 9: 144. https://doi.org/10.1186/1476-511X-9-144
  51. Wilcox CS (2010) Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol Ther 126: 119-145. https://doi.org/10.1016/j.pharmthera.2010.01.003
  52. Williams ED, Magliano DJ, Tapp RJ, Oldenburg BF, Shaw JE (2013) Psychosocial stress predicts abnormal glucose metabolism: The Australian diabetes, obesity and lifestyle (Aus-Diab) study. Annals of Behavioral Medicine 46: 62-72. https://doi.org/10.1007/s12160-013-9473-y
  53. Wilson GL (1984) Mechanism of streptozotocin-induced and alloxan-induced damage in rat ${\beta}$-cells. Diabetologia 27: 587-591. https://doi.org/10.1007/BF00276973
  54. Wu SJ, Ng LT (2008) Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) in Taiwan. LWT 41: 323-330. https://doi.org/10.1016/j.lwt.2007.03.003
  55. Yoo JW (2013) What is needed for early detection of diabetes complications? J Korean Diabetes 14: 32-35. https://doi.org/10.4093/jkd.2013.14.1.32
  56. Youn KS, Kim JW (2012) Antioxidant and angiotensin convertting enzyme I inhibitory activities of extracts from mulberry (Cudrania tricuspidata) fruit subjected to different drying methods. J Korean Soc Food Sci Nutr 41: 1388-1394. https://doi.org/10.3746/jkfn.2012.41.10.1388