DOI QR코드

DOI QR Code

Analysis of Intensity-Duration-Quantity (IDQ) Curve for Designing Flood Retention Basin

홍수저류지 설계를 위한 강우강도-지속시간-홍수량(IDQ) 곡선 해석

  • Kim, Jin Gyeom (Dept. of Civil and Environmental Engineering, Dankook Univ.) ;
  • Kang, Boosik (Dept. of Civil and Environmental Engineering, Dankook Univ.) ;
  • Yoon, Byungman (Department of Civil Engineering, Myongji Univ.)
  • 김진겸 (단국대학교 공과대학 토목환경공학과) ;
  • 강부식 (단국대학교 공과대학 토목환경공학과) ;
  • 윤병만 (명지대학교 공과대학 토목공학과)
  • Received : 2013.10.10
  • Accepted : 2013.12.27
  • Published : 2014.01.31

Abstract

This research was carried out for suggesting design criteria and procedure for maximizing flood control capacity by building flood control facilities like flood retention basin built in connection with existing facilities in order to cope with increased uncertainty due to factors such as urbanization and climate change. We suggested the procedure for the analysis under the various scenarios applicable for the cases of determining retention basin capacity as provision for the flood water level increase in main river channel or estimating flood water level reduction effect when retention basin capacity is given. Procedure for estimating design flood hydrograph at any duration using Intensity-Duration-Quantity (IDQ) originated from the existing IDF, and its application example were provided. Based on rainfall estimated by the IDQ analysis, it is possible to calculate an equivalent peak hydrographs under various scenarios, e.g. lower frequency hydrograph under same rainfall duration with water level higher than existing hydrograph, hydrograph with same peak and higher volume due to increased rainfall duration, hydrograph with higher peak and volume than existing hydrograph, etc.

기후변화 및 도시화 등의 요인으로 인하여 증가하는 불확실성에 대처하기 위하여 건설되는 홍수저류지 형태의 치수시설물이 기존의 치수시설물과 연계되어 치수능력을 극대화 할 수 있는 설계기준과 절차의 제시를 위하여 본 연구가 수행되었다. 본류의 홍수위 증가량에 대비할 수 있는 저류지용량결정, 저류지용량이 주어져 있을 경우의 본류의 홍수위 저감효과산정 등에 적용할 수 있는 다양한 시나리오 하에서의 분석을 위한 절차를 제시하였다. 기존 설계홍수량 산정절차에 근거한 IDQ (Intensity-Duration-Quantity) 분석을 이용하여 임의지속시간에서의 설계홍수수문곡선 산정기법을 제시하였고 그 활용사례를 제시하였다. IDQ 분석을 통해 산정한 강우량을 기반으로 등가첨두 수문곡선을 산정할 수 있으며, 기존 수문곡선과 동일한 지속시간 하에서 하천의 수위가 높아질 수 있는 저빈도 수문곡선과, 기존 수문곡선과 동일한 첨두홍수량을 지니지만 강우지속기간의 증가로 인해 유출체적이 증가하는 수문곡선, 기존 수문곡선에 비해 하천의 수위 및 수문곡선의 부피 모두 증가하는 수문곡선 등 다양한 형태의 수문곡선에 대한 시나리오해석을 가능하게 한다.

Keywords

References

  1. Ajami, N.K., Duan, Q., and Sorooshian, S. (2006). "An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction." Water Resource Research, Vol. 43(W01403), pp. 1-19.
  2. Chen, C.L. (1983) "Rainfall Intensity-Duration-Frequency formulas." Journal of Hydraulic Engineering, Vol. 109, pp. 1603-1621. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:12(1603)
  3. Clark, C.O. (1945). "Storage and the unit hydrograph." Transaction of ASCE, Vol. 110, pp. 1419-1446.
  4. Huff, F.A. (1967). "Time distribution of rainfall in heavy storm." Water Resource Research, Vol. 3, No. 4, pp. 1007-1019. https://doi.org/10.1029/WR003i004p01007
  5. Kavetski, D., Kuczera, G., and Franks, S. (2006). "Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory." Water Resources Research, Vol. 42, No. 3, W03407.
  6. Kim, J.W., Nam, W.S., Shin, J.Y., and Heo, J.H. (2008). "Regional frequency analysis of South Korean rainfall data using FORGEX method." Journal of Korea Water Resources Association, KWRA, Vol. 41, No. 4 pp. 405-412(in Korean). https://doi.org/10.3741/JKWRA.2008.41.4.405
  7. Kim, S.U., Lee, K.S., and Park, Y.J. (2010). "Analysis of uncertainty of rainfall frequency analysis including extreme rainfall events." Journal of Korea Water Resources Association, KWRA, Vol. 43, No. 4, pp. 337-351(in Korean). https://doi.org/10.3741/JKWRA.2010.43.4.337
  8. Koutsoyiannis, D., Kozonis, D., and Manetas, A. (1998). "A mathmatical framework for studying rainfall Intensity-Duration-Frequency relationships." Journal of Hydrology, Vol. 206, No. 1-2, pp. 118-135. https://doi.org/10.1016/S0022-1694(98)00097-3
  9. Kwon, H.H., Kim, J.G., Lee, J.S., and Na, B.K. (2012). "Uncertainty assessment of single event rainfallrunoff model using bayesian model." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 5, pp. 505-516 (in Korean) https://doi.org/10.3741/JKWRA.2012.45.5.505
  10. Lee, H.S., Jeon, M.W., Balin, D., and Rode, M. (2009). "Application of rainfall runoff model with rainfall uncertainty." Journal of Korea Water Resources Association, KWRA, Vol. 42, No. 10, pp. 773-783(in Korean). https://doi.org/10.3741/JKWRA.2009.42.10.773
  11. Ludwig, R., May, I., Turcotte, R., Vescovi, L., Braun, M., Cyr, J.-F., Fortin, L.-G., Chaumont, D., Biner, S., Chartier, I., Caya, D., and Mauser, W. (2009). "The role of hydrological model complexity and uncertainty in climate change impact assessment." Advances in Geosciences, Vol. 21, No. 21, pp. 63-71. https://doi.org/10.5194/adgeo-21-63-2009
  12. Madsen, H., Mikkelsen, P.S., Rosbjerg, D., and Harremoes, P. (2002). "Regional estimation of rainfall Intensity-Duration-Frequency curves using generalized least squares regression of partial duration series statistics." Water Resources Research, Vol. 38, No. 11, pp. 21-1-21-11.
  13. Mansell, M.G. (1997). "The effect of climate change on rainfall trend and flooding risk in the west of Scotland." Nordic Hydrology, Vol. 28, No. 1, pp. 37-50.
  14. MLIT. (1999). Wonju river maintenance basic plan, Ministry of Land, Infrastructure and Transport, pp. 78-81(in Korean).
  15. MLIT. (2011). Study on Improvement and Supplement of Probability Rainfall in South Korea, Ministry of Land, Infrastructure and Transport, pp. 8.8-8.11(in Korean).
  16. MLIT. (2012). Guideline of Design Flood Estimation, Ministry of Land, Infrastructure and Transport, pp. 1-3(in Korean).
  17. Seo, Y.M., and Park, K.B. (2011a). "Uncertainty analysis for parameters of probability distribution in rainfall frequency analysis by bayesian MCMC and metropolis Hastings Algorithm." Journal of the Environmental Sciences, KENSS, Vol. 20, No. 3, pp. 329-340 (in Korean). https://doi.org/10.5322/JES.2011.20.3.329
  18. Seo, Y.M., and Park, K.B. (2011b). "Uncertainty analysis for parameter estimation of probability distribution in rainfall frequency analysis using bootstrap." Journal of the Environmental Sciences, KENSS, Vol. 20, No. 3, pp. 321-327(in Korean). https://doi.org/10.5322/JES.2011.20.3.321
  19. Shin, H.J., Nam, W.S., Jung, Y.H., and Heo, J.H. (2008). "Uncertainty assessment of regional frequency analysis for generalized logistic distribution." Journal of Korean Society of Civil Engineers, KSCE, Vol. 28, No. 6b, pp. 723-729(in Korean).
  20. Sivapalan, M., and Bloschl, G. (1998). "Transformation of point rainfall to areal rainfall Intensity-Duration-Frequency Curves." Journal of Hydrology, Vol. 204, pp. 150-167. https://doi.org/10.1016/S0022-1694(97)00117-0
  21. USDA-SCS. (1985). National Engineering Handbook, Section 4-Hydrology. Washington D.C., US.

Cited by

  1. Flood Alert and Warning Scheme Based on Intensity-Duration-Quantity (IDQ) Curve considering Antecedant Moisture Condition vol.35, pp.6, 2015, https://doi.org/10.12652/Ksce.2015.35.6.1269