DOI QR코드

DOI QR Code

Application of Capacitive Deionization for Desalination of Mining Water

광산수의 탈염을 위한 축전식 탈염기술의 적용

  • Lee, Dong-Ju (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Kang, Moon-Sung (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Lee, Sang-Ho (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Park, Jin-Soo (Department of Environmental Engineering, College of Engineering, Sangmyung University)
  • Received : 2014.01.27
  • Accepted : 2014.02.13
  • Published : 2014.02.28

Abstract

In this study, capacitive deionization (CDI) was introduced for desalination of mining water. Ion-exchange polymer coated carbon electrodes (IEE) were used in CDI to desalt mining water. The CDI performance using the IEE for desalination of mining water was carried out and then was compared with that using general carbon electrodes without ion-exchange polymer coating (GE). Moreover, to investigate the effect of the concentration of influent solutions on CDI performance, the CDI performance using the IEE for desalination of brackish water (NaCl 200 ppm) was also performed and analyzed. As a result, the higher salt removal efficiency, rate and the lower energy consumption in the CDI process using the IEE and mining water were obtained compared with those using the GE and mining water. It is mainly due to higher non-Faradaic current, low ohmic resistance of the influent, overlapping effect of electric double layers in micropore of the electrode. In addition, the CDI process using the IEE and brackish water shows much higher salt removal efficiency and lower salt removal rate than that using the IEE and mining water. This results from the lower concentration (i.e., higher ohmic resistance) and salt amount of the influent.

본 연구에서 광산수의 재활용을 위해 축전식 탈염공정을 적용하였다. 이를 위해 이온교환폴리머를 코팅한 탄소 전극을 활용하였는데 본 성능을 관찰하기 위해 이온교환폴리머를 코팅하지 않은 탄소 전극으로 광산수의 탈염 운전을 수행하고 비교분석하였다. 또한, 광산수의 높은 농도가 축전식 탈염공정에 미치는 영향을 조사하기 위해 저농도의 기수(NaCl 200 ppm)를 활용한 운전 성능 비교 역시 수행하였다. 연구 결과 이온교환폴리머를 코팅한 탄소 전극을 활용한 광산수 탈염 효율 및 제거양 모두 그렇지 않은 전극에 비해 높았고 에너지 소모량은 더 적게 나타났다. 이는 높은 비패러데이 전류, 높은 염농도에 따른 낮은 용액 저항, 전극 기공 내에서의 이중층 중첩효과에 기인하는 것으로 판단되었다. 또한, 이온교환폴리머를 코팅한 전극을 활용한 기수 탈염 운전 결과 낮은 염농도에 따라 용액의 저항이 높아지고, 제거 대상의 염의 양이 낮아 광산수에 비해 매우 높은 효율을 보였으나, 제거양은 매우 낮음을 알 수 있었다.

Keywords

References

  1. Anon., Human Appropriation of the World's Fresh Water Supply (2006).
  2. B. Pink, "Water Account Australia 2009-10", Australian Bureau of Statistics (2012).
  3. S. R. Rao, J. A. Finch, "A review of water re-use in flotation", Minerals Engineering, 2, 65 (1989). https://doi.org/10.1016/0892-6875(89)90066-6
  4. S. Stewart, "Mining and the Environment", New South Wales Parliamentary Library Research Service, 7 (2009).
  5. C. J. Moran, C. M. Cote, J. McIntosh, "Northern Bowen Basin water and salt management practices", ACARP, report C15001, 357 (2006).
  6. H. Bartosiewicz, P. Curcio, "Coal handling and preparation plant (CHPP) corrosion control and management", ACARP, report C12055, 48 (2005).
  7. C. M. Cote, C. J. Moran, C. J. Hedemann, "Evaluating the Costs and Benets of Salt Management Strategies at Mine Sites Using a Systems Model", Mine Water Environ., 26, 229 (2007). https://doi.org/10.1007/s10230-007-0016-2
  8. S. Porada, R. Zhao, A. van der Wal, V. Presser, P. M. Biesheuvel, "Review on the science and technology of water desalination by capacitive deionization", Progress in Materials Science, 58, 1388 (2013).
  9. B. Hutton, I. Kahan, T. Naidu, P. Gunther, "Operating and maintenance experience at the Emalahleni water reclamation plant", International Mine Water Conference, Pretoria, South Africa, 415 (2009).
  10. C. J. Moran, A. Moore, "Salinity and experience constraints to water reuse in coal mining", 9th International Mine Water Congress, Oviedo, Spain, 489 (2005).
  11. K. C. Leonard, J. R. Genthe, J. L. Sanfilippo, W. A. Zeltner, M. A. Anderson, "Synthesis and characterization of asymmetric electrochemical capacitive deionization materials using nanoporous silicon dioxide and magnesium doped aluminum oxide", Electrochim. Acta, 54, 5286 (2009). https://doi.org/10.1016/j.electacta.2009.01.082
  12. J.-Y. Choi, J.-H. Choi, "A carbon electrode fabricated using a poly(vinylidene fluoride) binder controlled the Faradaic reaction of carbon powder", J. Ind. Eng. Chem., 16, 401 (2010). https://doi.org/10.1016/j.jiec.2009.08.005
  13. B.-R. Lee, I.-J. Jeong, S.-G. Park, "Effects of N & P Treatment Based on Liquid Organic Materials for Capacitive Deionization(CDI)", J. Korean Electrochem. Soc., 16, 123 (2013). https://doi.org/10.5229/JKES.2013.16.3.123
  14. Y. Oren, "Capacitive deionization (CDI) for desalination and water treatment - past, present and future (a review)", Desalination, 228, 10 (2008). https://doi.org/10.1016/j.desal.2007.08.005
  15. Y.-J. Kim, J.-H. Choi, "Improvement of Desalination Efficiency in Capacitive Deionization Using a Carbon Electrode Coated with an Ion-exchange Polymer", Water Res., 44, 990 (2010). https://doi.org/10.1016/j.watres.2009.10.017
  16. P. M. Biesheuvel, B. Van Limpt, A. Van der Wal, "Dynamic adsorption/desorption process model for capacitive deionization", J. Phys. Chem., 113, 5636 (2009).
  17. P. M. Biesheuvel, "Thermodynamic cycle analysis for capacitive deionization", J. Colloid Interf. Sci., 332, 258 (2009). https://doi.org/10.1016/j.jcis.2008.12.018
  18. H. Li, L. Pan, T. Lu, Y. Zhan, C. Nie, Z. Sun, "A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization", J. Electroanal. Chem., 653, 40 (2011). https://doi.org/10.1016/j.jelechem.2011.01.012
  19. J.-W. Lee, H.-I. Kim, H.-J. Kim, H.-S. Shin, J.-S. Kim, B.-I. Jeong, S.-G. Park, "Desalination Effects of Capacitive Deionization Process Using Activated Carbon Composite Electrodes", J. Korean Electrochem. Soc., 12, 287 (2009). https://doi.org/10.5229/JKES.2009.12.3.287
  20. K. S. Kang, W. K. Son, J. H. Choi, N. S. Park, T. I. Kim, "Ion-Selective Capacitive Deionization Composite Electrode, and Method for Manufacturing a Module", U. S. Patent No. EP 2487278, 1 (2012).
  21. S.-I. Jeon, H.-R., Park, J.-G. Yeo, S. C. Yang, C. H. Cho, M. H. Han, D. K. Kim, "Desalination via a new membrane capacitive deionization process utilizing flow-electrodes", Ener. Environ. Sci., 6, 1471 (2013). https://doi.org/10.1039/c3ee24443a
  22. K.-L. Yang, T.-Y. Ying, S. Yiacoumi, C. Tsouris, "Electrosorption of Ions from Aqueous Solutions by Nanostructured Carbon Aerogel", J. Colloid Interf. Sci., 250, 18 (2002). https://doi.org/10.1006/jcis.2002.8314
  23. K.-L. Yang, T.-Y. Ying, S. Yiacoumi, C. Tsouris, E. S. Vittoratos, "Electrosorption of Ions from Aqueous Solutions by Carbon Aerogel: An Electrical Double-Layer Model", Langmuir, 17, 1961 (2001). https://doi.org/10.1021/la001527s
  24. J.-H. Lee, W.-S. Bae, J.-H. Choi, "Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process", Desalination, 258, 159 (2010). https://doi.org/10.1016/j.desal.2010.03.020
  25. J.-B. Lee, K.-K. Park, H.-M. Eum, C.-W. Lee, "Desalination of a thermal power plant wastewater by membrane capacitive deionization", Desalination, 196, 125 (2006). https://doi.org/10.1016/j.desal.2006.01.011
  26. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, "Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes", Water Res., 42, 4923 (2008). https://doi.org/10.1016/j.watres.2008.09.026

Cited by

  1. Preparation and Characteristics of Fluorinated Carbon Nanotube Applied Capacitive Desalination Electrode with Low Energy Consumption vol.27, pp.4, 2016, https://doi.org/10.14478/ace.2016.1040
  2. Application of Capacitive Deionization Packed Ion Exchange Resins in Two Flow Channels vol.18, pp.1, 2015, https://doi.org/10.5229/JKES.2015.18.1.24