Studies on Composition of Dietary Fiber in Vegetables

한국인 상용 채소류의 식이섬유 조성에 관한 연구

  • Kye, Soo-Kyung (Dept. of Medical Consilience, Graduate School, Dankook University)
  • 계수경 (단국대학교 대학원 생명융합학과)
  • Received : 2014.01.11
  • Accepted : 2014.02.14
  • Published : 2014.02.28

Abstract

The distinctive physiological effect of dietary fiber in the body were studied according to contents and characteristics of each fiber component. In the present study, the composition of fiber in vegetables was investigated, and the effect of heat treatments on fiber content was studied. Contents of total pectin were 0.89~2.75 g/100 g on dry weight basis, with most contents from 1~2 g/100 g. The hot water soluble pectin (HWSP) content of vegetables ranged from 0.33~0.98 g/100 g, sodium hexametaphosphate soluble pectin (HXSP), from 0.29~0.81 g/100 g and HCl soluble pectin(HCLSP), from 0.30~1.40 g/100 g. HCLSP showed the greatest variation according to the type of vegetables. Every vegetable types showed similar contents of these three pectic fractions. Fiber contents of vegetables ranged from 8.8~23.8% for cellulose, 0.6~10.6% for hemicellulose, 1.0~5.2% for lignin, 10.9~25.4% for acid detergent fiber (ADF) and 11.8~31.9% for neutral detergent fiber (NDF) on dry weight basis. Especially, peppers showed higher contents of NDF than the other vegetables. It was found that a great portion of NDF, which is total insoluble dietary fiber, was composed of cellulose since cellulose constituted 63% of NDF. Heat treatment reduced total pectin content in all vegetables regardless of the heating methods and the greatest reduction was observed upon boiling. HWSP content increased, whereas HXSP and HCLSP contents decreased. Heat treatment increased the NDF, ADF and cellulose contents, and most changes were due to changes in cellulose content. The values of hemicellulose and lignin showed irregular pattern upon heating. Contents of total dietary fiber (TDF) were 1.20~7.11% on fresh weight basis. Garlic, edible burdock and pepper leaf showed higher contents of TDF than other vegetables. It was found that a great portion of TDF was composed of insoluble dietary fiber.

식이섬유가 인체 내에서 나타내는 중요한 생리 기능은 각 구성 성분들의 함량과 특성에 의해 영향을 받으므로, 본 연구에서는 채소를 대상으로 식이섬유 각 성분들의 함량을 분별 측정하고, 열처리 시 변화를 조사하였다. 이상의 결과를 요약하면 다음과 같다. 각종 채소의 총 펙틴 함량은 건조물 기준으로 0.89~2.75 g/100 g의 범위였으며, 대부분 1~2 g/100 g 수준이었다. 펙틴의 각 분획 별 함량의 경우, 열수 가용성 펙틴 함량은 0.33~0.98 g/100 g, 인산 가용성 펙틴 함량은 0.29~0.81 g/100 g의 범위였고, 염산 가용성 펙틴 함량은 0.30~1.40 g/100 g의 범위로 세 가지 펙틴 분획 중에서 채소 종류에 따른 변이가 가장 컸다. 이상의 세 가지 펙틴 분획의 비율은 각 채소에서 대략 비슷한 수준이었다. 각종 채소의 불용성 식이섬유 함량은 건물 기준으로 총 불용성 식이섬유인 Neutral detergent fiber(NDF)는 11.8~31.9%, Acid detergent fiber(ADF)는 10.9~25.4%, cellulose는 8.8~23.8%, hemicellulose는 0.6~10.6%, lignin는 1.0~5.2% 범위였으며, 특히 고추류에서 총 불용성 식이섬유 함량이 높았다. Cellulose는 총 불용성 식이섬유인 NDF의 63% 정도를 차지하여 본 실험에 사용된 채소들의 경우, 불용성 식이섬유의 대부분이 cellulose로 구성되어 있었다. 가열 방법에 따른 펙틴 함량의 변화에 있어서, 총 펙틴 함량은 가열 처리 시 원료 시료에 비해 감소했으며, boiling시 가장 크게 감소하였다. 펙틴의 세 분획 중 열수 가용성 펙틴(HWSP) 함량은 증가했고, 비수용성 펙틴인 인산 가용성 펙틴(HXSP)과 염산 가용성 펙틴(HCLSP) 함량은 감소했다. 가열 처리에 의한 NDF, ADF, cellulose 함량의 변화는 원래 시료보다 증가했으며, 이들 성분들의 변화는 cellulose의 함량 변화에 기인했다. 그러나 hemicellulose와 lignin 함량은 일정한 경향을 보이지 않았다. 총 식이섬유 함량은 신선물 기준으로 1.20~7.11% 범위였으며, 마늘, 우엉, 고추잎 등에서 높았다. 총 식이섬유 함량의 대부분이 불용성 식이섬유로 구성되어 있음을 알 수 있었다. 총 식이섬유/조섬유 비율은 1.32~4.00으로 붉은 고추가 가장 낮고, 상치가 가장 높았으나, 채소 종류 간 큰 차이를 보이지 않았다.

Keywords

References

  1. 보건복지부 (2008) 국민 건강 영양조사 제 4기 2차보도 p 24.
  2. AOAC (1990) Official Methods of Analysis 15th ed. Association of Official Analytical Chemists. Washington, DC, USA. pp 82-781.
  3. Albersheim P, Neukom H, Deuel H (1960) Splitting of pectin chain molecules in neutral solution. Arch Biochem Biophys 90: 46-53. https://doi.org/10.1016/0003-9861(60)90609-3
  4. Cha HS, Hong Si, Chung MS (2003) Changes in mineral and pectic substancs of Korean mature-green mume(Prunus mume Sieb. et Zucc) fruits packed in plastic films with gas absorbents during storage. Korean J Food Sci Technol 35: 149-154.
  5. Concepcion VV, Herranz J, Blanco I, Enrique RH (1982) Dietary fiber in spanish fruits. J Food Sci 47: 1840. https://doi.org/10.1111/j.1365-2621.1982.tb12895.x
  6. Drews LM, Kies C, Fox HM (1979) Effect of dietary fiber on copper, zinc and magnesium utilization by adolescent boys. Am J Clin Nutr 32: 1893-1897.
  7. Herranz J, Concepcion VV, Enrique RH (1981) Cellulose, hemicellulose and lignin content of raw and cooked spanish vegetable. J Food Sci 46: 1927. https://doi.org/10.1111/j.1365-2621.1981.tb04521.x
  8. Johnston DE, Kelly D, Dorrian PP (1983) Losses of pectic substances during cooking and the effect of water hardness. J Sci Food Agric 34: 733. https://doi.org/10.1002/jsfa.2740340710
  9. Kang MJ, Koh KS, Koh JS (2000) Changes in pectin of satsuma mandarin during ripening and storage. Korean J Postharvest Sci Technol 7: 38-43.
  10. Kendall CWC, Esfahani A, Jenkins DJA (2010) The link between dietary fibre and human health. Food Hydrocolloid 24: 42-48. https://doi.org/10.1016/j.foodhyd.2009.08.002
  11. Kertesz LI (1951) The Pectic Substances. Interscience Publishers, Inc., New York. pp 150-160.
  12. Kim YK, Lee GC (1999) Contents of pectin substance and minerals and textural properties of leek added Kimchi during fermentation. Korean J Soc Food Sci 15: 258-263.
  13. Lee K, Garcia-Lopez JS (1985) Iron, zinc, copper and magnesium binding by cooked pinto bean neutral and acid detergent fiber. J Food Sci 50: 651. https://doi.org/10.1111/j.1365-2621.1985.tb13764.x
  14. Lee KS, Lee SR (1987) Determination of dietary fiber content in some fruits and vegetables. Korean J Food Sci Technol 19: 317-323.
  15. Lee KS, Lee SR (1993) Analysis of dietary fiber content in Korean vegetable foods. Korean J Food Sci Technol 25: 225-231.
  16. Liu W, Ko KH, Kim HR, Kim IC (2012) The effect of insoluble dietary fiber extracted from Chinese cabbage waste on plasma lipid profiles in rates fed a high fat diet. J Korean Soc Food Sc: Nutr 41: 33-40. https://doi.org/10.3746/jkfn.2012.41.1.033
  17. McComb EA, McCready RM (1952) Colorimetric determination of pectic substances. Analytical Chemistry 24: 1630. https://doi.org/10.1021/ac60070a036
  18. McQueen RE, Nicholson JWG (1979) Modification of the neutral detergent fiber procedure for cereals and vegetables by using $\alpha$-amylase. J Assoc Off Anal Chem 62: 676.
  19. Park KY, Ha JD, Rhee SH (1996) A study on the contents of dietary fibers and crude fiber in Kimchi ingredients and Kimchi. J Korean Soc Food Nutr 25: 69-75.
  20. Parrott ME, Thrall BE (1978) Functional propertise of various fibers: Physical properties. J Food Sci 43: 759-765. https://doi.org/10.1111/j.1365-2621.1978.tb02412.x
  21. Reistad R, Frolich W (1984) Content and composition of dietary fiber in some fresh and cooked Norwegian vegetables. Food Chem 13: 209. https://doi.org/10.1016/0308-8146(84)90074-8
  22. Samuel K(1968) Pectic substances of dry beans and their possible correlation with cooking time. J Food Sci 33: 438.
  23. Saunders RM, Hautala E (1979) In "Dietary Fiber : Chemistry and Nutrition". Inglett, G. E., Falkehang, S. I., Eds., Academic Press, New York. p 79.
  24. Schneeman BO (1986) Physical and chemical properties, method of analysis, andphysiological effects. Food Technol 40: 104.
  25. Schneeman BO (1987) Soluble vs insoluble fiber-different psysiological responses. Food Technol 41: 81.
  26. Simpson JI, Halliday EG (1941) Chemical and histological studies of the disintegration of cellmembrance materials in vegetables during cooking. Food Research 6: 189-195. https://doi.org/10.1111/j.1365-2621.1941.tb16283.x
  27. Slavin JL (2001) Dietary fiber and colon cancer. In Handbook of Dietary Fiber, Cho SS, Dreber ML. eds. Marcel Dekker Inc, New York, NY, USA. pp 31-45.
  28. Sub HJ, Yoon HS (1989) Quantative analysis and physico-chemical properties of dietary fiber in vegetables. J Korean Soc Food Nutr 18: 403-409.
  29. Van Soest PJ, Wine RH (1967) Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J Assoc Off Anal Chem 50: 50-54.