DOI QR코드

DOI QR Code

CO2 Fixation by Magnesium Hydroxide from Ferro-Nickel Slag

페로니켈 슬래그로 부터 제조된 Mg(OH)2를 이용한 CO2 고정화

  • Song, Hao-Yang (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Seo, Jong-Beom (Technical Research Center, Hyundai Steel company) ;
  • Kang, Seong-Kuy (Department of Environmental R&D, BK Environmental Construction) ;
  • Kim, In-Deuk (Busan Metropolitan City Yeonjegu Environment & Sanitation division) ;
  • Choi, Bong-Wook (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Oh, Kwang-Joong (Department of Civil and Environmental Engineering, Pusan National University)
  • 송호양 (부산대학교 사회환경시스템공학과) ;
  • 서종범 (현대제철(주) 기술연구소) ;
  • 강성규 (백구엔지니어링(주) 환경R&D 부서) ;
  • 김인득 (부산광역시 연제구청 환경위생과) ;
  • 최봉욱 (부산대학교 사회환경시스템공학과) ;
  • 오광중 (부산대학교 사회환경시스템공학과)
  • Received : 2014.01.24
  • Accepted : 2014.03.21
  • Published : 2014.03.31

Abstract

In this study, the $Mg(OH)_2$ slurry was made form ferro-nickel slag and then used for $CO_2$ sequestration. The experiments were in the order as leaching step, precipitation, carbonation experiments. According to the leaching results, the optimal leaching conditions were $H_2SO_4$ concentration of 1 M and the temperature of 333 K. In the $Mg(OH)_2$ manufacturing step, NaOH was added to increase the pH upto 8, the first precipitation was confirmed as $Fe_2O_3$. After removal the first precipitation, the pH was upto 11, the $Mg(OH)_2$ was generated by XRD analysis. The $Mg(OH)_2$ slurry was used for $CO_2$ sequestration. The pseudo-second-order carbonation model was used to apply for $CO_2$ sequestration. The $CO_2$ sequestration rate was increased by the $CO_2$ partial pressure and temperature. However, $CO_2$ sequestration rate was decreased when temperature upto 323 K. After $CO_2$ sequestrated by $Mg(OH)_2$, the $CO_2$ can be sequestrated stable as $MgCO_3$. This study also presented optimal sequestration condition was the pH upto 8.38, the maximum $MgCO_3$ can be generated. This study can be used as the basic material for $CO_2$ sequestration by ferro-nickel slag at pilot scale in the future.

본 논문은 페로니켈 슬래그를 이용하여 간접적으로 $CO_2$를 고정화시키는 기술에 대한 연구를 하였으며, 효율적으로 Mg를 추출하여 제조된 $Mg(OH)_2$$CO_2$ 고정화 최적 조건을 제시하고자 하였다. 실험 결과, 최적의 추출조건은 1 M $H_2SO_4$, 반응온도 333 K이었으며, 용출액에 NaOH를 첨가하여 pH값을 8까지 높일 경우, 침전물은 $Fe_2O_3$로 확인되었다. 또한 pH 값이 11까지 높아질 때, 그 성분은 $Mg(OH)_2$로 나타났다. 이렇게 제조된 $Mg(OH)_2$ slurry 용액을 $CO_2$ 고정화실험에서 준 2차 탄산화반응 모델을 통해 적용한 결과, 반응온도 및 초기 $CO_2$분압에 따라 초기 $CO_2$의 고정화 속도를 증진할 수 있는 반면 반응온도가 323 K 이상 높아질 경우, 고정화속도가 감소하는 것으로 나타났다. 또한 $CO_2$ 고정화반응 시 이온을 조사한 결과, $CO_2$를 고정화 할 수 있는 최적의 pH 조건으로 8.38 이상 유지해야 할 것으로 판단되었다. 종합적으로 본 연구에서는 페로니켈 슬래그를 이용하여 $CO_2$를 고정화하기 위한 최적의 조건을 도출하였으며, 향후 $CO_2$를 고정화 하기 위한 연구의 기초자료로 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. Min, D. J., "Strategy for Reducing Greenhouse Gas Emissions in the Steel Industry," Research Division, Ministry of Knowledge Economy, Korean Iron & Steel Association, October, 2010.
  2. Rubin, E. S., "Special Report on Carbon Dioxide Capture and Storage," IPCC, 2005.
  3. Chae, S. C., Jang, Y. N., and Ryu, K. W., "Mineral Carbonation as a Sequestration Method of $CO_2$," J. Geol. Soc. Korea, 45 (5), 527-555 (2009).
  4. Kim, H. S., Chae, S. C., Ahn, Z. H., and Jang, Y. N., "$CO_2$ Sequestration by Mineral Carbonation," Miner. Sci. Ind., 22 (1), (2009).
  5. Lizuka, A., Fujii, M., Yamasaki, A., and Yanagisawa, Y., "Development of a New $CO_2$ Sequestration Process Utilizing the Carbonation of Waste Cement," Ind. Eng. Chem. Res., 43(24), 7880-7887 (2004). https://doi.org/10.1021/ie0496176
  6. Huijgen, W. J. J., Witkamp, G. J., and Comans, R. N. J., "Mineral $CO_2$ Sequestration by Steel Slag Carbonation," Environ. Sci. Technol., 39, 9676-9682 (2005). https://doi.org/10.1021/es050795f
  7. Back, M., Kuehn, M., Stanjek, H., and Peiffer, S., "Reactivity of Alkaline Lignite Fly Ashes towards $CO_2$ in Water," Environ. Sci. Technol., 42(12), 4520-4526 (2008). https://doi.org/10.1021/es702760v
  8. Bobicki, E. R., Liu, Q. X., Xu, Z. H., and Zeng, H. B., "Carbon Capture and Storage using Alkaline Industrial Wastes," Prog. Energy Combust., 38(2), 302-320 (2012). https://doi.org/10.1016/j.pecs.2011.11.002
  9. Doucet, F. J., "Effective $CO_2$-Specific Sequestration Capacity of Steel Slags and Variability in their Leaching Behavior in View of Industrial Mineral Carbonation," Miner. Eng., 23(3), 262-269 (2010). https://doi.org/10.1016/j.mineng.2009.09.006
  10. Eloneva, S., Teir, S., Salminen, J., Fogelholm, C. J., and Zevenhoven, R., "Steel Converter Slag as a Raw Material for Precipitation of Pure Calcium Carbonate," Ind. Eng. Chem. Res., 47(18), 7104-7111 (2008). https://doi.org/10.1021/ie8004034
  11. Kim, V., and Li, Y, J., "Ferro-Nickel Slag Leaching Characteristics by Physical and Chemical Processes," Korea Solid Wastes Eng. Soc., 283-285 (2010).
  12. Chu, Y. S., Lim, Y. R., Park, H. B., Song, H., Lee, J. K., and Lee, S. H., "Extraction of Mg Ion and Fabrication of Mg Compound from Ferro-Nickel Slag," J. Kor. Ceram. Soc., 47(6), 613-617 (2010). https://doi.org/10.4191/KCERS.2010.47.6.613
  13. Kim, E. Y., Choi, S. W., Park, J. H., Kim, V., and Li, Y. J., "The Extraction Ability of Mg and Fe Components from Ferronickel Slag Depending on their Particle Size and Hydrochloric Acid Concentration," Kor. Solid Wastes Eng. Soc., 28(6), 672-679 (2011).
  14. Maroto-Valer, M. M., Fauth, D. J., Kuchta, M. E., Zhang, Y., and Andresen, J. M., "Activation of Magnesium Rich Minerals as Carbonation of $CO_2$ Gas Disposal," Twenty-first Annual International Pittsburgh Coal Conference, Osaka, 2005.
  15. Nduagu, E., Bjorklof, T., Fagerlund, J., Warna, J., Geerlings, H., and Zevenhoven, R., "Production of Magnesium Hydroxide from Magnesium Silicate for the Purpose of $CO_2$ Mineralization - Part 1: Application to Finnish Serpentinite," Miner. Eng., 30, 75-86 (2012). https://doi.org/10.1016/j.mineng.2011.12.004
  16. Kim, H. S., "The Basic Research on $CO_2$ Fixation by Mineral Carbonation Technology," Korea Institute of Geoscience And Mineral Resources, 87-88 (2009).
  17. Lagergren, S., "About the Theory of So-called Adsorption of Soluble Substances," Handlingar., 24(4), 1-39 (1898).
  18. Ho, Y. S., and Mckay, G., "Pseudo-Second Order Model for Sorption Processes," Proc. Biochem., 34, 451-456 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  19. Lopez, R. P., Hernandez, G. M., Nieto, J. M., Renard, F., and Charlet, L., "Carbonation of Alkaline Paper Mill Waste to Reduce $CO_2$ Greenhouse Gas Emissions into the Atmosphere," Appl. Geochem., 23(8), 2292-2300 (2008). https://doi.org/10.1016/j.apgeochem.2008.04.016
  20. Oelkers, E. H., "An Experimental Study of Forsterite Dissolution Rates as a Function of Temperature and Aqueous Mg and Si Concentration," Chem. Geol., 175(4), 485-494 (2001). https://doi.org/10.1016/S0009-2541(00)00352-1
  21. Teir, S., Revitzer, H., Eloneva, S., Fogelholm, C. J., and Zevenhoven, R., "Dissolution of Natural Serpentinite in Mineral and Organic Acids," Int. J. Miner. Proc, 83(2), 36-46 (2007). https://doi.org/10.1016/j.minpro.2007.04.001
  22. Lacin, O., Donmez, B., and Demir, F., "Dissolution kinetics of natural magnesite in acetic acid solutions Dissolution kinetics of natural magnesite in acetic acid solutions," Int. J. Miner. Proc, 75(2), 91-99 (2005). https://doi.org/10.1016/j.minpro.2004.05.002
  23. Kose, T. E., "Dissolution of Magnesium from Natural Magnesite Ore by Nitric Acid Leaching," J. Eng. Archit, XXV(2), 43-56 (2012).
  24. Hernandez, G. M., Renard, F., Chiriac, R., Findling, N., and Toche, F., "Rapid Precipitation of Magnesite Micro-Crystals from $Mg(OH)_2$-$H_2O$-$CO_2$ Slurry Enhanced by NaOH and a Heat-ageing Step (from-20 to $90^{\circ}C$)," Crystal Growth Design, 12(11), 5233-5240 (2012). https://doi.org/10.1021/cg300652s
  25. Nduagu, E., "Mineral Carbonation: Preparation of Magnesium Hydroxide [$Mg(OH)_2$] from Serpentinite Rock," Master Dissertation, Turku: Abo Akademi University, Finland, 2008.
  26. Experience, N., Romaoa,I., and Zevenhovena, R., "Production of $Mg(OH)_2$ for $CO_2$ Emissions Removal Applications: Parametric and Process Evaluation," Proceedings of ECOS 2012, June 26-29 (2012).
  27. Nduagu, E., Bjorklof, T., Fagerlund, J., Makila, E., Salonen, J., Geerlings, H., and Zevenhoven, R., "Production of Magnesium Hydroxide from Magnesium Silicate for the Purpose of $CO_2$ Mineralization - Part 2: Mg Extraction Modeling and Application to Different Mg Silicate Rocks," Miner. Eng., 30, 87-94 (2012). https://doi.org/10.1016/j.mineng.2011.12.002
  28. Hanhoun, M., Montastruc, L., Catherine, A. P., Biscans, B., Freche, M., and Pibouleau, L., "Temperature Impact Assessment on Struvite Solubility Product: A Thermodynamic Modeling Approach," Chem. Eng. J., 167(1), 50-58 (2011). https://doi.org/10.1016/j.cej.2010.12.001
  29. Botero, C., Field, Herzog, H. J., and Ghoniem, A. F., "Impact of Finite-rate Kinetics on Carbon Conversion in a High-pressure, Single-Stage Entrained Flow Gasifier with Coal-$CO_2$ Slurry Feed," Appl. Energy, 104, 408-417 (2013). https://doi.org/10.1016/j.apenergy.2012.11.028
  30. Jung, K. S., Keener, T. C., Green, V. C., and Khang, S. J., "$CO_2$ Absorption Study in a Bubble Column Reactor with $Mg(OH)_2$," Int. J. Environ. Technol. Manage., 4(1), 116-136 (2004). https://doi.org/10.1504/IJETM.2004.004625
  31. Bertos, M. F., Simons, S. J. R., Hills, C. D., and Carey, P. J., "A Review of Accelerated Carbonation Technology in the Treatment of Cement-based Materials and Sequestration of $CO_2$," J. Hazard. Mater., 112(30), 193-205 (2004). https://doi.org/10.1016/j.jhazmat.2004.04.019
  32. Byeon, T. B., Lee, J. Y., Kim, D. Y., Lee, H. H., and Kim, H. S., "Carbonation Treatment Technology of Steel Making Slag," Res. Inst. Ind. Sci. Technol., 19(1), 32-39 (2005).
  33. Vagvolgyi, V., Hales, M., Frost, R. L., Locke, A., Kristof, J., and Horvath, E., "Conventional and Controlled Rate Thermal Analysis of Nesquehonite $Mg(HCO_3)(OH){\cdot}2(H_2O)$)," J. Therm. Anal. Calorim., 94(2), 523-528 (1994).
  34. Jarosinski, A., and Madejska, L., "$MgCO_3$ Obtaining from Wastewaters Generated during the Acidic Leaching of Zinc Concentrates," Minerlia Slovaca, 42, 317-320 (2010).
  35. Olajire, A. A., "A Review of Mineral Carbonation Technology in Sequestration of $CO_2$," J. Petrol. Sci. Eng., 109(22), 364-392 (2013). https://doi.org/10.1016/j.petrol.2013.03.013

Cited by

  1. 제철 슬래그를 이용한 광물 탄산화 기술의 개발 현황과 연구 방향 vol.55, pp.2, 2014, https://doi.org/10.9713/kcer.2017.55.2.141
  2. 페로니켈슬래그와 하수슬러지소각재를 이용한 액비로부터 스트루바이트 생산 타당성 연구 vol.34, pp.3, 2014, https://doi.org/10.15681/kswe.2018.34.3.316
  3. Struvite production from anaerobic digestate of piggery wastewater using ferronickel slag as a magnesium source vol.42, pp.3, 2014, https://doi.org/10.1080/09593330.2019.1631390