DOI QR코드

DOI QR Code

Characteristics of Partial Discharge Under HVDC in SF6 Gas

SF6 가스 중 직류 고전압 하에서 부분방전 특성

  • Kim, Min-Su (Division of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Kim, Sun-Jae (Division of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Jeong, Gi-Woo (Division of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Jo, Hyang-Eun (Division of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Kil, Gyung-Suk (Division of Electrical and Electronics Engineering, Korea Maritime and Ocean University)
  • 김민수 (한국해양대학교 전기전자공학과) ;
  • 김선재 (한국해양대학교 전기전자공학과) ;
  • 정기우 (한국해양대학교 전기전자공학과) ;
  • 조향은 (한국해양대학교 전기전자공학과) ;
  • 길경석 (한국해양대학교 전기전자공학과)
  • Received : 2014.03.17
  • Accepted : 2014.03.24
  • Published : 2014.04.01

Abstract

This paper dealt with the measurement and analysis of partial discharge (PD) under high voltage direct current (HVDC) in SF6 gas. Electrode systems such as a protrusion on conductor (POC), a protrusion on enclosure (POE), a crack on epoxy plate and a free particle (FP) were fabricated to simulate the insulation defects. The analysis system was designed with a Time-Frequency (T-F) map algorithm programed based on LabVIEW. This can arrange the acquired PD pulses into frequency and time domain. A HVDC power source is composed of a transformer (220 V/50 kV), a diode (100 kV) and a capacitor (50 kV, 0.5 ${\mu}F$). The gap between the electrodes is 3 mm, and the $SF_6$ gas was set at 5 bar. PD pulses were detected by a 50 ${\Omega}$ non-inductive resistor. In the analysis, PD pulses were distributed below 0.5 MHz and 20 ns ~ 35 ns for the POC, 0.7 MHz ~ 1.7 MHz, below 0.6 MHz and 10 ns ~ 40 ns and 60 ns ~125 ns for the POE, below 0.1 MHz and 135 ns ~ 215 ns for the crack, and below 1.6 MHz and 250 ns for the FP.

Keywords

References

  1. H. Q. Niu, A. Cavallini, and G. C. Montanari, Proc. IEEE Int. Symp. on Electrical Insulation, 373 (2008).
  2. R. Sarathi and G Koperundevi, IEEE Trans. Dielectr. Electr. Insul., 15, 1724 (2008). https://doi.org/10.1109/TDEI.2008.4712677
  3. U. Schicher, M. Kuschel, and J. Gorablenkow, Proc. Int. Symp. on High Voltage Engineering, 136 (2013).
  4. S. Meijer, P. D. Agoris, J. J. Smit, M. D. Judd, and L. Yang, Proc. Int. Symp. on Electrical Insulation, 416 (2006).
  5. M. H. Yun and K. S. Kim, Proc. the KIEE (World of Electricity) (KIEE, Seoul, Korea, 2014) p. 52.
  6. R. Sarathi, A. V. Giridhar, and K. Sethupathi, IEEE Trans. Dielectr. Electr. Insul., 18, 707 (2011). https://doi.org/10.1109/TDEI.2011.5931056
  7. J. J. Park, S. Y. Lee, and D. C. Mun, J. KIEEME, 19, 942 (2006).
  8. A. J. Reid, M. D. Judd, R. A. Fouracre, B. G. Stewart, and D. M. Hepburn, IEEE Trans. Dielectr. Electr. Insul., 18, 444 (2011). https://doi.org/10.1109/TDEI.2011.5739448
  9. G. S. Kil, I. K. Kim, D. W. Park, S. Y. Choi, and C. Y. Park, Current Appl. Phys., 9, 296 (2009). https://doi.org/10.1016/j.cap.2008.01.018
  10. A. Contin, G. C. Montanari, and A. Cavallini, IEEE Trans. Dielectr. Electr. Insul., 7, 30 (2000). https://doi.org/10.1109/94.839338
  11. A. Cavallini, G. C. Montanari, F. Puletti, and A. Contin, IEEE Trans. Dielectr. Electr. Insul., 12, 203 (2005). https://doi.org/10.1109/TDEI.2005.1430391
  12. A. Contin, A. Cavallini, G. C. Montanari, G. Pasini, and F. Puletti, IEEE Trans. Dielectr. Electr. Insul., 9, 335 (2002). https://doi.org/10.1109/TDEI.2002.1007695
  13. H. K. Cha, J. Y. Lee, D. W. Park, and G. S. Kil, J. KIEEME, 25, 229 (2012).