DOI QR코드

DOI QR Code

Genetic Diversity and Spatial Genetic Structure of Populus koreana Population in Mt. Odae, Korea

오대산 물황철나무(Populus koreana) 집단의 유전다양성 및 공간적 유전구조 분석

  • Shin, Sookyung (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Song, Jeong-Ho (Division of Special-purpose Trees, Korea Forest Research Institute) ;
  • Lim, Hyo-In (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Jang, Kyung-Hwan (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Hong, Kyung-Nak (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Jei-Wan (Division of Forest Genetic Resources, Korea Forest Research Institute)
  • 신수경 (국립산림과학원 산림유전자원과) ;
  • 송정호 (국립산림과학원 특용자원연구과) ;
  • 임효인 (국립산림과학원 산림유전자원과) ;
  • 장경환 (국립산림과학원 산림유전자원과) ;
  • 홍경낙 (국립산림과학원 산림유전자원과) ;
  • 이제완 (국립산림과학원 산림유전자원과)
  • Received : 2013.10.08
  • Accepted : 2014.03.14
  • Published : 2014.03.31

Abstract

This study describes analysis of genetic diversity and spatial genetic structure of Korean poplar (Populus koreana Rehder) in Mt. Odae using I-SSR markers. P. koreana is a deciduous broad-leaved tree species that primarily grows in the alpine valleys of China, Russia and North Korea. In South Korea, P. koreana is found limitedly in Gangwon province. Especially, the population in Mt. Odae is located on the southern limit line, its importance is emphasized from the genetic resource conservation perspective. The Shannon's diversity (I=0.230) and the expected heterozygosity (He=0.151) were relatively low as compared with those of other plant species. Spatial autocorrelation analysis using Tanimoto's distance showed that the genetic patch was founded within 400 m. It is suggested that individual trees for ex situ conservation should be sampled with a minimum distance of 400 m between trees.

본 연구에서는 물황철나무(Populus koreana Rehder) 집단을 대상으로 I-SSR 표지자를 이용해 유전다양성과 유전적 공간구조를 분석하였다. 물황철나무는 중국, 러시아 극동지역과 북한의 고산 계곡부 등에 서식하는 낙엽활엽 교목이다. 물황철나무는 남한에서 강원도 일대에 제한적으로 분포한다. 특히 오대산 집단은 물황철나무의 남방한계지로서 유전자원보존의 중요성이 강조된다. 8개의 I-SSR primer로 유전다양성을 추정한 결과, Shannon의 다양성 지수(I)는 0.230, 이형접합도의 기대치(He)는 0.151로 유사한 생활사를 갖는 타 수종에 비해 유전다양성이 매우 낮게 나타났다. 유전적 군락을 확인하기 위해 공간적 자기상관성 분석을 수행한 결과, 조사 지역 내의 물황철나무 집단은 400 m 이내에서 유전적으로 유사한 군락구조를 갖고 있는 것으로 나타났다. 물황철나무 집단의 현지외 유전자 보존을 위한 표본추출 시, 개체 간 거리를 400 m 이상으로 두는 것이 효율적일 것으로 판단된다.

Keywords

References

  1. Berg, E.E. and Hamrick, J.L. 1995. Fine-scale genetic structure of a turkey oak forest. Evolution 49(1): 110-120. https://doi.org/10.2307/2410297
  2. CBD-COP10. 2010. Strategic Plan for Biodiversity, 2011-2020. Tenth meeting of the Conference of the Parties to the Convention on Biological Diversity (COP 10). < http://www.cbd.int/doc/?meeting=cop-10.
  3. Choi, H.S., Hong, K.N., Chung, J.M., Kang, B.Y., and Kim, W.W. 2004. Genetic Diversity and Spatial Genetic Structure of Empetrum nigrum var. japonicum in Mt. Halla, South Korea. Journal of Korean Forest Society 93(3): 175-180.
  4. Chung, M.G. and Epperson, B.K. 2000. Clonal and spatial genetic structure in Eurya emarginata (Theaceae). Heredity 84(2): 170-177. https://doi.org/10.1046/j.1365-2540.2000.00644.x
  5. Chung, M.Y., Nason, J.D., Epperson, B.K., and Chung, M.G. 2003. Temporal aspects of the fine-scale genetic structure in a population of Cinnamomum insularimontanum (Lauraceae). Heredity 90(1): 98-106. https://doi.org/10.1038/sj.hdy.6800187
  6. Chung, T.H. 1943. Illustrated manual of Korean trees and shrubs. Choseon Natural History Museum Society, Seoul, Korea. pp. 683.
  7. Degen, B., Petit, R., and Kremer, A. 2001. SGS-Spatial Genetic Software: A computer program for analysis of spatial genetic and phenotypic structures of individuals and populations. Journal of Heredity 92(5): 447-448. https://doi.org/10.1093/jhered/92.5.447
  8. Epperson, B. 1992. Spatial structure of genetic variation within populations of forest tree. New Forests 6(1-4): 257-278. https://doi.org/10.1007/BF00120648
  9. Fang, Z.F., Zhao, S.D., and Skvortsov, A.K. 1999. Salicaceae. In Wu, Z.Y., P.H. Raven, and D.Y. Hong. (eds.). Flora of China, Vol. 4. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis. pp. 139-274.
  10. Fuchs, E.J. and Hamrick, J.L. 2010. Genetic Diversity in the endangered tropical tree, Guaiacum sanctum (Zygophyllaceae). Journal of Heredity 101(3): 284-291. https://doi.org/10.1093/jhered/esp127
  11. Hamrick, J.L., Godt, M.J.W., and Sherman-Broyles, S.L. 1992. Factor influencing levels of genetic diversity in woody plant species. New Forests 6(1-4): 95-124. https://doi.org/10.1007/BF00120641
  12. Hong, K.N., Kwon, Y.J., Chung, J.M., Shin, C.H., Hong, Y.P., and Kang, B.Y. 2001. Spatial Genetic Structure at a Korean Pine (Pinus koraiensis) Stand on Mt. Jumbong in Korea Based on Isozyme Studies. Journal of Korean Forest Society 90(1): 43-54.
  13. Hughes, A.R., Inouye, B.D., Johnson, M.T.J., Underwood, N., and Vellend, M. 2008. Ecological consequences of genetic diversity. Ecology Letters 11(6): 609-623. https://doi.org/10.1111/j.1461-0248.2008.01179.x
  14. Jeong, J.H., Kim, K.S., Lee, C.H., and Kim, Z.S. 2007. Genetic Diversity and Spatial Structure in Populations of Abelia tyaihyoni. Journal of Korean Forest Society 96(6): 667-675.
  15. Jones, F.A, Hamrick, J.L., Peterson, C.J., and Squiers, E.R. 2006. Inferring colonization history from analyses of spatial genetic structure within populations Pinus strobus and Quercus rubra. Molecular Ecology 15(3): 851-861. https://doi.org/10.1111/j.1365-294X.2005.02830.x
  16. Kang, B.Y., Hong, K.N., Chung, J.M., and Hong, Y.P. 2003. Spatial Genetic Structure of Korean Black Raspberry (Rubus coreanus) at Mt. Chiak Using I-SSR Markers. Journal of Korean Forest Society 92(6): 558-566.
  17. Kang, H.D., Mun H.G., Park, I.S., and Lee, M.S. 2004. Effect of TDZ(Thidiazuron) on Shoot Proliferation of Peace Poplar. Korean Journal of Plant Biotechnology 31(1): 49-53. https://doi.org/10.5010/JPB.2004.31.1.049
  18. Kim, J.H., Park, J.I., Lee, S.K., and Mun, H.G. 1986. Callus Culture of Korean poplar (P. koreana). Proceedings of Korean Journal of Breeding Science. pp.17-18.
  19. Lammi, A., Siikamaki, P., and Mustajarvi, K. 1999. Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant Lychnis viscria. Conservation Biology 13(5): 1069-1078. https://doi.org/10.1046/j.1523-1739.1999.98278.x
  20. Lande, R. and Shannon, S. 1996. The role of genetic variation in adaptation and population persitence in a changing environment. Evolution 50(11): 434-437. https://doi.org/10.2307/2410812
  21. Lawton, J.H. 1993. Range, population abundance and conservation. Trends in Ecology & Evolution 8(11): 409-413. https://doi.org/10.1016/0169-5347(93)90043-O
  22. Lee, T.B. 2006. Coloured flora of Korea. Hyangmunsa. Seoul, Korea. pp. 1928.
  23. Lu, Z., Wang, Y., Peng, Y., and Korpelainen, H. 2006. Genetic diversity of Populus cathayana Rehd populations in southwestern china revealed by ISSRmarkers. Plant Science 170(2): 407-412. https://doi.org/10.1016/j.plantsci.2005.09.009
  24. Miao, Y.C., Su, J.R., Zang, Z.J., Li, H., Luo, J., and Zhang, Y.P. 2008. Isolation and characterization of microsatellite markers for the endangered Taxus yunnanensis. Conservation Genetics 9(6): 1683-1685. https://doi.org/10.1007/s10592-008-9532-2
  25. Nettel, A., Dodd, R.S., and Afzal-Rafii, Z. 2009. Genetic diversity, structure, and demographic change in tanoak, Lithocarpus densiflorus (Fagaceae), the most susceptible species to sudden oak death in California. American Journal of Botany 96(12): 2224-2233. https://doi.org/10.3732/ajb.0800339
  26. Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13(5): 1143-1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x
  27. Peng, Y.H., Lu, Z.X., Chen, K., Luukkanen, O., Korpelainen, H., and Li, C.Y. 2005. Population genetic survey of Populus cathayana originating from southeastern Qinghai-Tibetan Plateau of China based on SSR markers. Silvae Genetica 54(3): 116-122.
  28. Petit, R.J., Aguinagalde, I., de Beaulieu, J.L., Bittkau, C., Brewer, S., Cheddadi, R., Ennos, R., Fineschi, S., Grivet, D., Lascoux, M., Mohanty, A., Muller-Starck, G.M., Demesure-Musch, B., Palme, A., Martin, J.P., Rendell, S., and Vendramin, G.G. 2003. Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300(5625): 1563-1565. https://doi.org/10.1126/science.1083264
  29. Reed, D.H. and Frankham, R. 2003. Correlation between fitness and genetic diversity. Conservation Biology 17(1): 230-237. https://doi.org/10.1046/j.1523-1739.2003.01236.x
  30. Rehder, A. 1922. Two new Asiatic poplars. Journal of the Arnold Arboretum 3(4): 226-227.
  31. Song, J.H., Lim, H.I., Hong, K.N., Jang, K.H., and Hong, Y.P. 2012. Genetic Diversity and Spatial Genetic Structure of Dwarf Stone Pine in Daecheongbong Area, Mt. Seorak. Korean Journal of Plant Resources 25(4): 407-415. https://doi.org/10.7732/kjpr.2012.25.4.407
  32. Streiff, R., Labbe, T., Bacilieri, R., Steinkellner, H., Glossl, J., and Kremer, A. 1998. Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Molecular Ecology 7(3): 317-328. https://doi.org/10.1046/j.1365-294X.1998.00360.x
  33. Ueno, S., Tomaru, N., Yoshimaru, H., Manabe, T., and Yamamoto, S. 2000. Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima, Japan. Molecular Ecology 9(6): 647-656. https://doi.org/10.1046/j.1365-294x.2000.00891.x
  34. Vekemans, X. and Hardy, O.J. 2004. New insights from finescale spatial genetic structure analyses in plant populations. Molecular Ecology 13(4): 921-935. https://doi.org/10.1046/j.1365-294X.2004.02076.x
  35. Vucetich, J.A. and Waite, T.A. 2003. Spatial patterns of demography and genetic processes across the species range: null hypothesis for landscape conservation genetics. Conservation Genetics 4(5): 639-645. https://doi.org/10.1023/A:1025671831349
  36. Williams, C.G. and Hamrick, J.L. 1996. Elite populations for conifer breeding and gene conservation. Canadian Journal of Forest Research 26(3): 453-461. https://doi.org/10.1139/x26-051
  37. Yeh, F.C., Yang, R., and Boyle, T. 1999. POPGENE VERSION 1.31: Microsoft Window-based Freeware for Population Genetic Analysis. Dept. of Renewable Resources. Univ. of Alberta. Edmonton, Alberta. Canada.

Cited by

  1. Fine-scale Spatial Genetic Structure of a Small Natural Stand of Populus davidiana in South Korea using AFLP markers vol.105, pp.3, 2016, https://doi.org/10.14578/jkfs.2016.105.3.309
  2. 제주도 개가시나무의 유전구조와 유전적 다양성 vol.107, pp.2, 2014, https://doi.org/10.14578/jkfs.2018.107.2.151