DOI QR코드

DOI QR Code

Effect of process conditions on crystal structure of Al PEO coating. II. Bipolar and electrolyte

알루미늄 PEO 코팅의 결정상에 미치는 공정 조건에 대한 연구 II. Bipolar 펄스와 전해액

  • Received : 2014.03.31
  • Accepted : 2014.04.11
  • Published : 2014.04.30

Abstract

Crystallographic phases of Plasma electrolytic oxidized Al alloy, A1100, A5052, A6061, A6063, A7075, were investigated. Two types of electrolyte $Na_2Si_2O_3$ and Na2P2O7 were also compared. Bipolar pulse, $2000{\mu}sec$ with $400{\mu}sec+420V$ impulse and $300{\mu}sec$ - impulse were applied for 20 min. ${\alpha}-alumina$, ${\gamma}-alumina$, ${\eta}-alumina$, $Al_{4.95}Si_{1.05}O_{9.52}$, and $(Al_{0.9}Cr_{0.1})_2O_3$ were mainly observed. Si, component of electrolyte, were moved into the PEO layer by bipolar pulse. Glassy phase was also observed at the surface of $Na_2Si_2O_3$ electrolyte treated PEO layer, and increased with the Mg content of Al alloy. It is concluded that at first glassy phase was formed by the micro plasma, and the high temperature of plasma turns glassy phase to several crystalline phases. And we could expect that many other crystalline phase could be formed by PEO process.

A1100, A5052, A6061, A6063, A7075 규격의 시판 알루미늄 합금 판재를 $Na_2SiO_3$$Na_2P_2O_7$ 전해질에서 pulse폭 $2000{\mu}sec$, + impulse 420 V, $400{\mu}sec$, -impulse $300{\mu}sec$의 bipolar pulse로 플라즈마 전해 산화 코팅(plasma electrolytic oxidation coating)한 산화피막의 결정상을 분석하였다. 표면에 형성된 산화물의 결정상은 ${\alpha}-alumina$, ${\gamma}-alumina$, ${\eta}-alumina$, $Al_{4.95}Si_{1.05}O_{9.52}$, 그리고 $(Al_{0.9}Cr_{0.1})_2O_3$가 관찰되었다. Bipolar pulse에 의해서 전해액의 성분인 Si가 산화피막에 포함되며, 포함된 Si는 결정상을 형성하기도 하지만 유리상을 형성시킨다. 이때 합금의 Mg 성분은 유리상의 양을 증가시킨다. Micro plasma에 의해서 용융된 표면은 유리상이 먼저 형성되고 이후 계속된 micro plasma의 열에 의하여 새로운 결정상으로 전이가 일어나는 과정을 거치며, 이에 따라 기존에 보고된 결정상이외에도 다양한 결정상이 형성될 수 있음을 추측할 수 있다.

Keywords

References

  1. K.I. Kim, S.C. Choi, K.S. Han, K.T. Hwang and J.H. Kim, "Synthesis of high purity aluminum nitride nanopowder by RF induction thermal plasma", J. Korean Cryst. Growth Cryst. Technol. 24 (2014) 1. https://doi.org/10.6111/JKCGCT.2014.24.1.001
  2. Y.S. Park, I.H. Wui, W.S. Cho, J.H. Kim and K.T. Hwang, "Synthesis of bohemite powder from aluminum etching solution", J. Korean Cryst. Growth Cryst. Technol. 22 (2012) 286. https://doi.org/10.6111/JKCGCT.2012.22.6.286
  3. B.Y. Kim, J.H. Ham, D.Y. Lee, M.-S. Jeon, Y.-N. Kim, K.-Y. Kim, J.-W. Choi, S.Y. Kim and K.Y. Kim, "Effect of process conditions on crystal structure of Al PEO coating. I. Unipolar and coating time", J. Korean Cryst. Growth Cryst. Technol. 24 (2014) in press. https://doi.org/10.6111/JKCGCT.2014.24.2.059
  4. KS D6701:2002 Aluminum and aluminum alloy sheets and plates, strips and coiled sheets.
  5. KS D2331:2003 Aluminium alloy ingots for die casting.
  6. T. Ban and K. Okada, "Structure refinement of mullite by the Rietveld method and a new method for estimation of chemical composition", J. Am. Ceram. Soc. 75 (1992) 227. https://doi.org/10.1111/j.1151-2916.1992.tb05473.x
  7. I. Levin and D.G. Brandon, "Metastable alumina polymorph : crystal structures and transition sequences", J. Am. Ceram. Soc. 81 (1998) 1995.
  8. C. Ruberto, "Metastable alumina from theory : Bulk, surface, and growth of ${\kappa}-Al_2O_3$", Ph.D. Thesis, Dept. App. Phy., Chalmers Univ. Tech. and Gteborg Univ., Gteborg, Sweden (2001).
  9. I. Levin, L.A. Bendersky, D.G. Brandon and M. Rhle, "Cubic to Monoclinic phase transformations in alumina", Acta. Mater. 45 (1997) 3659. https://doi.org/10.1016/S1359-6454(97)00040-2
  10. R.O. Hussein, X. Nie and D.O. Northwood, "Influence of process parameters on electrolytic plasma discharging behavior and aluminum oxide coating microstructure", Surf. Coat. Technol. 205 (2010) 1659. https://doi.org/10.1016/j.surfcoat.2010.08.059