DOI QR코드

DOI QR Code

Fabrication of Flake-like LiCoO2 Nanopowders using Electrospinning

전기 방사법을 이용한 플레이크형 LiCoO2 나노 분말의 제조

  • Koo, Bon-Ryul (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • An, Geon-Hyoung (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 구본율 (서울과학기술대학교 신소재공학과) ;
  • 안건형 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2014.02.12
  • Accepted : 2014.03.13
  • Published : 2014.04.28

Abstract

Flake-like $LiCoO_2$ nanopowders were fabricated using electrospinning. To investigate their formation mechanism, field-emssion scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were carried out. Among various parameters of electrospinning, we controlled the molar concentration of the precursor and the PVP polymer. When the molar concentration of lithium and cobalt was 0.45 M, the morphology of $LiCoO_2$ nanopowders was irregular and round. For 1.27 M molar concentration, the $LiCoO_2$ nanopowders formed with flake-like morphology. For the PVP polymer, the molar concentration was set to 0.011 mM, 0.026 mM, and 0.043 mM. Irregular $LiCoO_2$ nanopowders were formed at low concentration (0.011 mM), while flake-like $LiCoO_2$ were formed at high concentration (0.026 mM and 0.043 mM). Thus, optimized molar concentration of the precursor and the PVP polymer may be related to the successful formation of flake-like $LiCoO_2$ nanopowders. As a results, the synthesized $LiCoO_2$ nanopowder can be used as the electrode material of Li-ion batteries.

Keywords

References

  1. H. S. Yang, J. H. Pee and Y. J. Kim: J. Kor. Powd. Met. Inst., 18 (2011) 277 (Korean). https://doi.org/10.4150/KPMI.2011.18.3.277
  2. H. Xia and L. Lu: Electrochim. Acta, 52 (2007) 7014. https://doi.org/10.1016/j.electacta.2007.05.019
  3. X. Qian, X. Cheng, Z. Wang, X. Huang, R. Guo, D. Mao, C. Chang and W. Song: Nanotechnology, 20 (2009) 115608. https://doi.org/10.1088/0957-4484/20/11/115608
  4. M. Okubo, E. Hosono, J. D. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou and I. Honma: J. Am. Chem. Soc., 129 (2007) 7444. https://doi.org/10.1021/ja0681927
  5. C. Chen, E. M. Kelder, P. J. J. M. van der Put and J. Schoonman: J. Mater. Chem., 6 (1996) 765. https://doi.org/10.1039/jm9960600765
  6. H. P. Lin and C. Y. Mou: Acc. Chem. Res., 35 (2002) 927. https://doi.org/10.1021/ar000074f
  7. Z. S. Peng, C. R. Wan and C. Y. Jiang: J. Power Sources, 72 (1998) 215. https://doi.org/10.1016/S0378-7753(97)02689-X
  8. F. Jiao, K. M. Shaju and P. G. Bruce: Angew. Chem. Int. Ed., 44 (2005) 6550. https://doi.org/10.1002/anie.200501663
  9. A. Burukhin, O. Brylev, P. Hany and B. R. Churagulov: Solid State Ionics, 151 (2002) 259. https://doi.org/10.1016/S0167-2738(02)00721-X
  10. H. Chen, X. Qiu, W. Zhu and P. Hagenmuller: Electrochem. Commun., 4 (2002) 488. https://doi.org/10.1016/S1388-2481(02)00357-0
  11. Y. I. Lee and Y. H. Choa: J. Kor. Powd. Met. Inst., 9 (2012) 271 (Korean).
  12. H. L. An and H. J. Ahn: Mater. Lett., 93 (2013) 88. https://doi.org/10.1016/j.matlet.2012.11.066
  13. C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, and J. F. Rabolt: Macromolecules, 37 (2004) 573. https://doi.org/10.1021/ma0351975
  14. H. T. Kim, C. Y. Hwang, H. B. Song, K. J. Lee, Y. J. Joo, S. J. Hong, N. K. Kang, S. D. Park, K. D. Kim and Y. H. Choa: J. Kor. Powd. Met. Inst., 15 (2008) 114 (Korean). https://doi.org/10.4150/KPMI.2008.15.2.114
  15. Z. Wang, X. Liu, M. Lv, P. Chai, Y. Liu and J. Meng: J. Phys. Chem. B, 112 (2008) 11292.
  16. S. Megelski, J. S. Stephens, D. B. Chase and J. F. Rabolt: Macromolecules, 35 (2002) 8456. https://doi.org/10.1021/ma020444a
  17. K. H. Lee, H. Y. Kim, H. J Bang, Y. H. Jung and S. G. Lee: Polymer, 44 (2003) 4029. https://doi.org/10.1016/S0032-3861(03)00345-8
  18. A. R. Babar, S. S. Shinde, A. V. Moholkar, C. H. Bhosale, J. H. Kim and K. Y. Rajpure: J. Alloys Compd., 509 (2011) 3108. https://doi.org/10.1016/j.jallcom.2010.12.012
  19. J. Fu, Y. Bai, C. Liu, H. J. Yu and Y. J. Mo: Mater. Chem. Phys., 115 (2009) 105. https://doi.org/10.1016/j.matchemphys.2008.11.027
  20. A. A. Akl: Appl. Surf. Sci., 252 (2006) 8745. https://doi.org/10.1016/j.apsusc.2005.12.076
  21. M. Das, R. Ranjith, C. Bittencourt, S. B. Krupanidhi, J. J. Pireaux and S. A. Shivashankar: Appl. Phys. A, 95 (2009) 523. https://doi.org/10.1007/s00339-008-4936-x
  22. R. Alcantara, G. F. Ortiz, P. Lavela, J. L. Tirado, W. Jaegermann and A. Thissen: J. Electroanal. Chem., 584 (2005) 147. https://doi.org/10.1016/j.jelechem.2005.07.011
  23. L. Daheron, R. Dedryvere, H. Martinez, M. Menetrier, C. Denage, C. Delmas and D. Gonbeau: Chem. Mater., 20 (2008) 583. https://doi.org/10.1021/cm702546s
  24. Y. Aykut, B. Pourdeyhimi and S. A. Khan: J. Phys. Chem. Solids, 74 (2013) 1538. https://doi.org/10.1016/j.jpcs.2013.05.021
  25. Y. J. Zhang, Q. Yao, Y. Zhang, T. Y. Cui, D. Li, W. Liu, W. Lawrence and Z. D. Zhang: Cryst. Growth Des., 8 (2008) 3206. https://doi.org/10.1021/cg7010452
  26. T. Watanabe, H. Uono, S. W. Song, K. S. Han and M. Yoshimura: J. Solid State Chem., 162 (2001) 364. https://doi.org/10.1006/jssc.2001.9412
  27. Y. Shao-Horn, S. A. Hackney, A. J. Kahaian and M. M. Thackeray: J. Solid State Chem., 168 (2002) 60. https://doi.org/10.1006/jssc.2002.9679
  28. M. K. Jo, S. Y. Jeong and J. P. Cho: Electrochem. Commun., 12 (2010) 992. https://doi.org/10.1016/j.elecom.2010.05.010

Cited by

  1. -CoO/carbon-coated CoO Core/shell Nanowire Composites vol.21, pp.5, 2014, https://doi.org/10.4150/KPMI.2014.21.5.360
  2. Electrochemical Properties of Fluorine-Doped Tin Oxide Nanoparticles Using Ultrasonic Spray Pyrolysis vol.26, pp.5, 2016, https://doi.org/10.3740/MRSK.2016.26.5.258
  3. Electrochemical Behavior of Well-dispersed Catalysts on Ruthenium Oxide Nanofiber Supports vol.24, pp.2, 2017, https://doi.org/10.4150/KPMI.2017.24.2.96