DOI QR코드

DOI QR Code

Analysis of Trace Levels of Lodinated Trihalomethanes in Water Using Headspace - GC/ECD

Headspace - GC/ECD를 이용한 수중의 미량 요오드계 트리할로메탄류 분석

  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 송미정 (부산광역시 상수도사업본부 수질연구소) ;
  • 김경아 (부산광역시 상수도사업본부 수질연구소) ;
  • 염훈식 (부산광역시 상수도사업본부 수질연구소) ;
  • 최진택 (부산광역시 상수도사업본부 수질연구소)
  • Received : 2013.11.14
  • Accepted : 2013.12.25
  • Published : 2014.01.31

Abstract

Trihalomethanes (THMs) are formed as a results of the reaction of residual chlorine, used as a disinfectant in drinking water, with the organic matter in raw water. Although chlorinated and brominated THMs are the most common disinfection byproducts (DBPs) reported, iodinated THMs (I-THMs) can be formed when iodide is present in raw water. I-THMs have been usually associated with several medicinal or pharmaceutical taste and odor problems and is a potential health concern since they have been reported to be more toxic than their brominated and chlorinated analogs. Currently, there is no published standard analytical method for I-THMs in water. An automated headspace-gas chromatography/electron capture detector (GC/ECD) technique was developed for routine analysis of 10 THMs including 6 I-THMs in water samples. The optimization of the method is discussed. The limits of detection (LOD) and limits of quantification (LOQ) range from 12 ng/L to 56 ng/L and from 38 ng/L to 178 ng/L for 10 THMs, respectively. Matrix effects in river water, sea water and wastewater treatment plant (WWTP) final effluent water were investigated and it was shown that the method is suitable for the analysis of trace levels of I-THMs, in a wide range of waters. The method developed in the present study has the advantage of being rapid, simple and sensitive.

소독부산물의 일종인 트리할로메탄류(THMs)는 정수처리 공정에서 소독제로 사용되는 염소와 수중에 잔존하는 유기물질이 반응하여 생성된다. 일반적으로 염소계 및 브롬계 THMs는 일반적인 수돗물에서 검출되기 때문에 잘 알려져 있으나, 요오드계 THMs (I-THMs)의 경우는 수중에 요오드 이온이 존재할 때 생성된다. I-THMs는 약품취를 유발하며, 또한 염소계나 브롬계 THMs에 비해 인체독성이 더 강한 것으로 알려져 있다. 현재 I-THMs 분석을 위한 공인된 분석법은 없는 실정이다. 10종의 THMs 분석을 위해 headspace 전처리장치와 GC/ECD를 이용하여 최적화된 분석법을 개발하였으며, 개발된 분석법에 의한 검출한계(LOD)와 정량한계(LOQ)는 각각 12 ng/L~56 ng/L 및 38 ng/L~178 ng/L로 나타났다. 강물, 해수 및 하수처리장 최종방류수의 matrix 영향을 평가하였으며, 본 연구에서 개발된 분석법은 별도의 전처리 과정이 필요치 않아 간편하고 빠르며 자동화된 방법으로 수중에 미량으로 함유된 I-THMs 분석에 적합한 것으로 나타났다.

Keywords

References

  1. Son, H. J., Roh, J. S., Kim, S. G., Bae, S. M. and Kang, L. S., "Removal characteristics of chlorination disinfection byproducts by activated carbons," J. Kor. Soc. Environ. Eng., 27(7), 762-770(2005).
  2. Bichsel, Y. and von Gunten, U., "Formation of iodo-trihalomethanes during disinfection and oxidation of iodide containing waters," Environ. Sci. Technol., 34, 2784-2791(2000). https://doi.org/10.1021/es9914590
  3. Hua, G., Reckhow, D. A. and Kim, J., "Effect of bromide and iodide ions on the formation and speciation of disinfection by-products during chlorination," Environ. Sci. Technol., 40, 3050-3056(2006). https://doi.org/10.1021/es0519278
  4. Plewa, M. J., Wagner, E. D., Richardson, S. D., Thruston, A. D., Woo, Y. T. and Mckague, A. B., "Chemical and biological characterization of newly discovered iodoacetic drinking water disinfection by-products," Environ. Sci. Technol., 38, 4713-4722(2004). https://doi.org/10.1021/es049971v
  5. Richardson, S. D., Fasano, F., Ellington, J. J., Crumley, G. F., Buettner, K. M., Evans, J. J., Blount, B. C., Silva, L. K., Waite, T. J., Luther, G. W., McKague, B. A., Miltner, R. J., Wagner, E. D. and Plewa, M. J., "Occurrence and mammalian cell toxicity of iodinated disinfection by-products in drinking water," Environ. Sci. Technol., 42, 8330-8338(2008). https://doi.org/10.1021/es801169k
  6. Hansson, R. C., Henderson, M. J., Jack, P. and Taylor, R. D., "Iodoform taste complaints in chloramination," Water Res., 21(10), 1265-1271(1987). https://doi.org/10.1016/0043-1354(87)90179-5
  7. Cancho, B., Fabrellas, C., Diaz, A. and Ventura, F., "Determination of the odor threshold concentrations of iodinated trhalomethanes in drinking water," J. Agric. Food Chem., 49, 1881-1884(2001). https://doi.org/10.1021/jf001252m
  8. Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, M. J., Onstad, G. D. and Thruston, A. D., "Occurrence of new generation of disinfection by-products," Environ. Sci. Technol., 40, 7175-7185(2006). https://doi.org/10.1021/es060353j
  9. Hua, G. and Reckhow, D. A., "DBP formation during chlorination and chloramination: effect of reaction time, pH, dosage, and temperature," J. Am. Water Works Assoc., 100, 82-95(2007).
  10. Goslan, E. H., Krasner, S. W., Bower, M., Rocks, S. A., Holmes, P., Levy, L. and Parsons, S. A., "A comparison of disinfection by-products found in chlorinated and chloraminated drinking water in Scotland," Water Res., 43, 4698-4706(2009). https://doi.org/10.1016/j.watres.2009.07.029
  11. Allard, S., Charrois, J. W. A., Joll, C. A. and Heitz, A., "Simultaneous analysis of 10 trihalomethanes at nanogram per liter levels in water using solid-phase microextraction and gas chromatography mass-spectrometry," J. Chromatogr. A, 1238, 15-21(2012). https://doi.org/10.1016/j.chroma.2012.03.020
  12. WHO, Chloroform, Geneva(2004).
  13. US EPA, Drinking Water Criteria Document for Brominated Trihalomethanes, EPA-882-R-05-011, Washing, D.C., (2005).
  14. Cancho, B., Ventura, F. and Galceran, M. T., "Solid-phase microextraction for the determination of iodinated trihalomethanes in drinking water," J. Chromatogr. A, 841, 197-206(1999). https://doi.org/10.1016/S0021-9673(99)00320-9

Cited by

  1. Analysis of Trace Levels of Halonitromethanes (HNM) in Water using Headspace-SPME and GC-ECD vol.37, pp.5, 2015, https://doi.org/10.4491/KSEE.2015.37.5.293