DOI QR코드

DOI QR Code

Studies for CO2 Sequestration Using Cement Paste and Formation of Carbonate Minerals

시멘트 풀을 이용한 CO2 포집과 탄산염광물의 생성에 관한 연구

  • Choi, Younghun (Department of geological Environmental Sciences, Pusan National University) ;
  • Hwang, Jinyeon (Department of geological Environmental Sciences, Pusan National University) ;
  • Lee, Hyomin (Department of geological Environmental Sciences, Pusan National University) ;
  • Oh, Jiho (Department of geological Environmental Sciences, Pusan National University) ;
  • Lee, Jinhyun (Department of geological Environmental Sciences, Pusan National University)
  • 최영훈 (부산대학교 지질환경과학과) ;
  • 황진연 (부산대학교 지질환경과학과) ;
  • 이효민 (부산대학교 지질환경과학과) ;
  • 오지호 (부산대학교 지질환경과학과) ;
  • 이진현 (부산대학교 지질환경과학과)
  • Received : 2014.02.10
  • Accepted : 2014.03.21
  • Published : 2014.03.31

Abstract

Waste cement generated from recycling processes of waste concrete is a potential raw material for mineral carbonation. For the $CO_2$ sequestration utilizing waste cement, this study was conducted to obtain basic information on the aqueous carbonation methods and the characteristics of carbonate mineral formation. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. Leaching tests using two additives (NaCl and $MgCl_2$) and two aqueous carbonation experiments (direct and indirect aqueous carbonation) were conducted. The maximum leaching of $Ca^{2+}$ ion was occurred at 1.0 M NaCl and 0.5 M $MgCl_2$ solution rather than higher tested concentration. The concentration of extracted $Ca^{2+}$ ion in $MgCl_2$ solution was more than 10 times greater than in NaCl solution. Portlandite ($Ca(OH)_2$) was completely changed to carbonate minerals in the fine cement paste (< 0.15 mm) within one hour and the carbonation of CSH (calcium silicate hydrate) was also progressed by direct aqueous carbonation method. The both additives, however, were not highly effective in direct aqueous carbonation method. 100% pure calcite minerals were formed by indirect carbonation method with NaCl and $MgCl_2$ additives. pH control using alkaline solution was important for the carbonation in the leaching solution produced from $MgCl_2$ additive and carbonation rate was slow due to the effect of $Mg^{2+}$ ions in solution. The type and crystallinity of calcium carbonate mineral were affected by aqueous carbonation method and additive type.

폐콘크리트 처리 시 발생하는 시멘트 미분은 $CO_2$ 포집을 위한 광물탄산화 재료로 활용할 수 있다. 이번 연구에서는 폐콘크리트를 활용한 $CO_2$ 포집을 위한 기초연구로 수화시멘트의 수성탄산화 방안과 탄산염광물 형성 특성에 대한 자료를 확보하고자 하였다. 실험을 위해 물 : 시멘트 비를 6 : 4로 하여 28일간 수중 경화하여 시멘트 풀을 제작하고, 첨가제(NaCl과 $MgCl_2$)를 활용한 용출실험과 두 종류의 수성탄산화(직접수성탄산화와 간접수성탄산화)실험을 수행하였다. 용출실험 결과, $Ca^{2+}$ 이온의 용출은 시험된 최대 농도에서 보다 0.1 M NaCl과 0.5 M $MgCl_2$에서 최대로 나타났으며, $MgCl_2$는 NaCl에 비해 10배 이상의 $Ca^{2+}$ 이온을 용출력을 보였다. 미분(< 0.15 mm)의 시멘트 풀은 직접수성탄산화에 의해 1시간 이내에 탄산화에 의해 포트랜다이트가 거의 모두 탄산염 광물로 변화하고, CSH(calcium silicate hydrate)의 분해에 의한 탄산화도 진행되는 것으로 나타났다. 그러나 직접수성탄산화에는 NaCl과 $MgCl_2$와 같은 첨가제가 크게 효율적이지 못하였다. NaCl과 $MgCl_2$를 첨가제로 사용한 용출액에 대한 간접수성탄산화로 100% 순수한 방해석을 생성되었다. $MgCl_2$에 의한 용출액의 경우 탄산화를 위해 알칼리용액 의한 pH의 조절이 필요하였으며, $Mg^{2+}$ 이온의 영향으로 탄산화가 느리게 진행되었다. 수성탄산화 방법과 첨가제의 종류가 생성되는 탄산칼슘광물의 종류와 결정도 영향을 미치는 것으로 나타났다.

Keywords

References

  1. Chae, S.C., Jang, Y.N., and Woo, K.W. (2009) Mineral Carbonation as a sequestration method of $CO_2$. Journal of the Geological Society of Korea, 45, 527-555.
  2. Han, K.W., Rhee, C.H., and Chun, H.D. (2011) Feasibility of Mineral Carbonation Technologt as a $CO_2$ Storage Measure Considering Domestic Industrial Environment, The Korean Institute of Chemical Engineers, 49, 137-150.
  3. Lee, H.M., Hwang, J.Y., and Jin, C.S. (2003) Concrete Deterioration Near Coastal Area and Characteristics of Associated Secondary Mineral Formation, The Korean Society of Economic and Environmental Geology, 36, 365-374.
  4. Bonen, D. (1992) Composition and appearance of magnesium silicate hydrate and its relation to deterioration of cement-based materials, Journal of the American Ceramic Society, 75, 10, 2904-2906. https://doi.org/10.1111/j.1151-2916.1992.tb05530.x
  5. Deborah, N.H., John, S.G., Lawrence, L.S., Kawatra, S.K., and Timothy, C.E. (2009) Mineral carbonation for carbon sequestration in cement klin dust from waste piles, Journal of Hazardous Materials, 168, 31-37. https://doi.org/10.1016/j.jhazmat.2009.01.122
  6. Domingo, C., Loste, E., Gomez-Morales, J., Garcia-Carmona, J., and Fraile, J. (2006) Calcite precipitation by high-pressure CO2 carbonation route, The Journal of Supercritical Fluids, 36, 202-215. https://doi.org/10.1016/j.supflu.2005.06.006
  7. Huijgen, W.J.J., and Comans, R.N.J. (2005) Mineral $CO_2$ sequestration by carbonation of industrial residues; Literature overview and selection of residue, ECN-C--05-074, Energt research Centre of The Netherlands, Pettem, The Netherland.
  8. Heffman, D.W. (1984) Change in structures and chemistry of cement mortars stressed by a sodium chloride solution, Cement and Concrete Research, 14, 49-56. https://doi.org/10.1016/0008-8846(84)90079-6
  9. IPCC (2005). IPCC special report on carbon dioxide capture and storage. In: Metz, B., Davidson, O., de Coninck, H.C., Loos, M., Meyer, L.A. (Eds.), Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  10. Jo, H., Jang, Y.N., and Jo, H.Y. (2012a) Influence of NaCl on mineral carbonation of $CO_2$ using cement material in aqueous solutions. Chemical Engineering Science. 80, 232-241. https://doi.org/10.1016/j.ces.2012.06.034
  11. Jo, H.Y., Kim, J.H,, Lee, Y.J., Lee, M., and Choh, S.J., (2012b) Evaluation of factor affecting mineral carbonation of $CO_2$ using coal fly ash in aqueous slution unfder ambient condition. Chemical Engineering Journal, 183, 77-87. https://doi.org/10.1016/j.cej.2011.12.023
  12. Katsuyama, Y., Yamasaki, A., Iizuka, A., Fujii, M., Jumagai, K., and Yanagisawa, Y. (2005) Development of a process for producing high-purity calcium carbonate($CaCO_3$) from waste cement using pressurized $CO_2$. Environmental Progress, 24, 162-170. https://doi.org/10.1002/ep.10080
  13. Krauskopf, B.K (1979) Introduction to geochemistry, 2nd ed., McGraw-Hill, Inc., 617.
  14. Lackner, K.S., Wendt, C.H., Butt, D.P., Joyce, E.L., and Sharp, D.H. (1995) Carbon dioxide disposal in carbonate mineral, Energy, 20, 1153-1170. https://doi.org/10.1016/0360-5442(95)00071-N
  15. Marsh, B.K., and Day, R.L. (1988) Pozzolanic and cementitious reaction of fly ash in blended cement pastes, Cement and Concrete Research, 18, 301-310. https://doi.org/10.1016/0008-8846(88)90014-2
  16. O'Cconner, W.K., Dahlin, D.C., Nilsen, D.N., Walters, R.P., and Tunner, P.C. (2000) Carbon dioxide sequestration by direct mineral carbonation with carbonic acid, DOE/ARC, 008.
  17. Pane, I., and Hansen, W. (2005) Investigation of blended cement hydration by isothermal calorimetry and thermal analysis, Cement and Concrete Research, 59, 5241-5247.
  18. Park, A.H.A., and Fan, L.S. (2004) $CO_2$ mineral sequestration: physically activated dissolution of serpentine and pH swing process, Chemical Engineering Science, 59, 5241-5247. https://doi.org/10.1016/j.ces.2004.09.008
  19. Shao, Y., Monkman, S., and Boyd, A.J. (2010) Recycling carbon dioxide into concrete : a feasibility study, Proceeding of the 2010 concrete sustainability conference. 1-10.
  20. Sipila, J., Teir, S., and Zevenhoven., R. (2008) Carbon dioxide sequestration by mineral carbonation; Literature review update 2005-2007, Repory VT2008-1, Abo Akademi University.
  21. Seifritz, W. (1990) $CO_2$ disposal by means of sillicate, Nature, 345, 486.
  22. Teir, S., Eloneva, S., Zevenhoven, R. (2005) Production of precipitated calcium carbonate from calcium silicate and carbon dioxide. Energy Conversion and Management, 46, 2954-2979. https://doi.org/10.1016/j.enconman.2005.02.009
  23. Uliasz-Boche'ncyk, A., and Pomykala, R. (2011) Mineral sequestration of $CO_2$ with the use of cement waste, Emergy Procedia, 4, 2855-2860.
  24. Wada, N., Yamashita, K., and Umegaki, T. (1995) Effects of divalent cations upon nucleation, growth and transformation of calcium carbonate polymorphs under conditions of double diffusion. Journal of Crystal Growth, 498, 297-304.
  25. West, G. (1996) Alkali-aggregate reaction in concrete roads and bridges, American Society of Civil Engineers, 15.
  26. Zhang, Y., and Dawe, R. (2000) Influence of $Mg^{2+}$ on the kinetic of calcite precipitation and calcite crystal morphology, Chemical Geology, 163, 129-138. https://doi.org/10.1016/S0009-2541(99)00097-2

Cited by

  1. A Feasibility Study on the Utilization of by-Product Sludge Generated from Waste Concrete Recycling Process vol.25, pp.3, 2016, https://doi.org/10.7844/kirr.2016.25.3.29
  2. The Effect of Chloride Additives and pH on Direct Aqueous Carbonation of Cement Paste vol.28, pp.1, 2015, https://doi.org/10.9727/jmsk.2015.28.1.39
  3. Carbonate Biomineralization Using Speleothems and Sediments from Baekasan Acheon Cave (Limestone Cave) in Hwasun-gun, Jeollanam-do, South Korea vol.31, pp.2, 2018, https://doi.org/10.9727/jmsk.2018.31.2.113
  4. 레미콘 회수수를 이용한 침강성 탄산칼슘 제조에 관한 연구 vol.33, pp.2, 2016, https://doi.org/10.12925/jkocs.2016.33.2.232