DOI QR코드

DOI QR Code

Electrochemical Properties of Carbon Felt Electrode for Vanadium Redox Flow Batteries by Liquid Ammonia Treatment

암모니아수 처리에 따른 바나듐 레독스 흐름전지용 탄소펠트 전극의 전기화학적 특성

  • Kim, Yesol (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Cho, Seho (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Park, Se-Kook (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Jeon, Jae-Deok (Energy Storage Department, Korea Institute of Energy Research) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 김예솔 (충남대학교 공과대학 정밀응용화학과) ;
  • 조세호 (충남대학교 공과대학 정밀응용화학과) ;
  • 박세국 (충남대학교 공과대학 정밀응용화학과) ;
  • 전재덕 (한국에너지기술연구원) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과)
  • Received : 2014.03.24
  • Accepted : 2014.04.23
  • Published : 2014.06.10

Abstract

In this study, nitrogen doped carbon felt (CFt) is prepared using thermal oxidation and liquid phase ammonia treatment to improve the efficiency for vanadium redox flow batteries (VRFB). The electrochemical properties of prepared CFt electrodes are investigated using cyclic voltammetry (CV) and charge/discharge test. The XPS result shows that the increase of liquid phase ammonia treatment temperature leads to the increased nitrogen functional group on the CFt surface. Redox reaction characteristics using CV reveal that the liquid phase ammonia treated CFt electrodes are more reversible than the thermally oxidized CFt. When CFt is treated by the liquid phase ammonia at $300^{\circ}C$, VRFB cell energy efficiency, voltage efficiency, and current efficiency are increased about 6.93%, 1.0%, and 4.5%, respectively, compared to those of the thermally oxidized CFt. These results are because nitrogen functional groups on CFt help to improve the electrochemical properties of redox reaction between electrode and electrolyte interface.

본 연구에서는 바나듐 레독스 흐름전지의 효율을 향상시키고자 탄소펠트에 열산화 반응과 암모니아수 처리를 이용하여 질소가 도핑된 탄소펠트 전극을 제조하였다. 또한 제조된 탄소펠트 전극의 전기화학적 특성평가를 위하여 CV 실험 및 충/방전 실험을 실시하였다. 암모니아수 처리온도가 증가함에 따라 탄소펠트 표면의 질소 관능기가 증가함을 XPS를 통하여 확인하였으며, CV 측정 결과 암모니아수 처리된 탄소펠트는 열산화된 탄소펠트에 비하여 산화/환원의 반응성이 우수함을 확인하였다. 충/방전 실험결과 $300^{\circ}C$에서 암모니아수 처리한 탄소펠트 전극은 열산화된 탄소펠트 전극보다 에너지효율, 전압효율, 전류효율이 각각 약 6.93, 1.0, 4.5%씩 향상됨을 알 수 있었다. 이는 질소 관능기가 탄소펠트 전극과 전해질 사이의 전기화학적 성능 향상에 도움을 주었기 때문으로 사료된다.

Keywords

References

  1. P. Alotto, M. Guarnieri, and F. Moro, Redox flow batteries for the storage of renewable energy: A review, Renew. Sust. Energ. Rew., 29, 325-335 (2014). https://doi.org/10.1016/j.rser.2013.08.001
  2. C. P. d. Leon, A. F. Ferrer, J. G. Garcia, D. A. Szanto, and F. C. Walsh, Redox flow cells for energy conversion, J. Power Sources, 160, 716-732 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.095
  3. A. D. Blasi, O. D. Blasi, N. Briguglio, A. S. Aricoa, D. Sebastian, M. J. Lazaro, G. Monforte, and V. Antonucci, Investigation of several graphite-based electrodes for vanadium redox flow cell, J. Power Sources, 227, 15-23 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.098
  4. P. Zhao, H. Zhang, H. Zhou, J. Chen, S. Gao, and B. Yi, Characteristics and performance of 10 kW class all-vanadium redox-flow battery stack, J. Power Sources, 162, 1416-1420 (2006). https://doi.org/10.1016/j.jpowsour.2006.08.016
  5. H. Q. Zhu, Y. M. Zhang, L. Yue, W. S. Li, G. L. Li, D. Shu, and H. Y. Chen, Graphite-carbon nanotube composite electrodes for all vanadium redox flow battery, J. Power Sources, 184, 637-640 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.016
  6. J. C. Kim, C. H. Ryu, and A. S. Kang, The anodic oxidation of carbon felt electrodes for the all vanadium redox-flow battery, Appl. Chem. Eng., 12, 517-522 (2001).
  7. H. S. Kim, Electrochemical properties of graphite-based electrodes for redox flow batteries, Bull. Korean Chem. Soc., 32, 571-575 (2011). https://doi.org/10.5012/bkcs.2011.32.2.571
  8. H. Kaneko, K. Nozaki, Y. Wada, T. Aoki, A. Negishi, and M. Kamimoto, Vanadium redox reactions and carbon electrodes for vanadium redox flow battery, Electrochim. Acta, 36, 1191-1196 (1991). https://doi.org/10.1016/0013-4686(91)85108-J
  9. H. Zhou, H. Zhang, P. Zhao, and B. Yi, A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/ bromine redox flow battery, Electrochim. Acta, 51, 6304-6312 (2006). https://doi.org/10.1016/j.electacta.2006.03.106
  10. F. Q. Xue, H. T. Zhang, C. X. Wu, T. Ning, and X. Xu, Performance and mechanism of Prussian blue (PB) modified carbon felt electrode, Trans. Nonferrous Met. Soc. China, 19, s594-s599 (2009). https://doi.org/10.1016/S1003-6326(10)60115-X
  11. Z. Gonzalez, A. Sanchez, C. Blanco, M. Granda, R. Menendez, and R. Santamaria, Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery, Electrochem. Commun., 13, 1379-1382 (2011). https://doi.org/10.1016/j.elecom.2011.08.017
  12. C. Gao, N. Wang, S. Peng, S. Liu, Y. Lei, X. Liang, S. Zeng, and H. Zi, Influence of Fenton's reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery, Electrochim. Acta, 88, 193-202 (2013). https://doi.org/10.1016/j.electacta.2012.10.021
  13. S. Maldonado and K. J. Stevenson, Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes, J. Phys. Chem. B., 109, 4707-4716 (2005). https://doi.org/10.1021/jp044442z
  14. N. D. Kim, W. Kim, J. B. Joo, S. Oh, P. Kim, Y. Kim, and J. Yi, Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation, J. Power Sources, 180, 671-675 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.055
  15. B. Sun and M. S. Kazacos, Chemical modification of graphite electrode materials for vanadium redox flow battery application-part II. Acid treatments, Electrochim. Acta, 37, 2459-2465 (1992). https://doi.org/10.1016/0013-4686(92)87084-D
  16. T. M. Tseng, R. H. Huang, C. Y. Huang, K. L. Hsueh, and F. S Shieu, Improvement of titanium dioxide addition on carbon black composite for negative electrode in vanadium redox flow battery, J. Electrochem. Soc., 160, A1269-A1275 (2013). https://doi.org/10.1149/2.082308jes
  17. K. J. Kim, Y. J. Kim, J. H. Kim, and M. S. Park, The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries, Mater. Chem. Phys., 131, 547-553 (2011). https://doi.org/10.1016/j.matchemphys.2011.10.022
  18. L. Xu, J. Guo, F. Jin, and H. Zeng, Removal of $SO_2$ from $O_2$-containing flue gas by activated carbon fiber (ACF) impregnated with $NH_{3}$, Chemosphere., 62, 823-826 (2006). https://doi.org/10.1016/j.chemosphere.2005.04.070
  19. E Jeong, M. J. Jung, and Y. S. Lee, Role of fluorination in improvement of the electrochemical properties of activated carbon nanofiber electrodes, J. Fluorine Chem., 150, 98-103 (2013). https://doi.org/10.1016/j.jfluchem.2013.02.017
  20. C. Popov, M. F. Plass, A. Bergmaier, and W. Kulisch, Synthesis of carbon nitride films by low-power inductively coupled plasma-activated transport reactions from a solid carbon source, Appl. Phys. A., 69, 241-244 (1999).
  21. B. C. Bai, S. Cho, H. R. Yu, K. B. Yi, K. D. Kim, and Y. S. Lee, Effects of aminated carbon molecular sieves on breakthrough curve behavior in $CO_2$/$CH_4$ separation, J. Ind. Eng. Chem., 19, 776-783 (2013). https://doi.org/10.1016/j.jiec.2012.10.016
  22. L. Yue, W. Li, F. Sun, L. Zhao, and L. Xing, Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery, Carbon, 48, 3079-3090 (2010). https://doi.org/10.1016/j.carbon.2010.04.044
  23. B. Sun and M. S. Kazacos, Chemical modification of graphite electrode materials for vanadium redox flow battery application-part II. Acid treatments, Electrochim. Acta, 37, 2459-2465 (1992). https://doi.org/10.1016/0013-4686(92)87084-D
  24. Z. G. lez, C. Botas, P. Alvarez, S. Roldan, C. Blanco, R. Santamaria, M. Granda, and R. Menendez, Thermally reduced graphite oxide as positive electrode in vanadium redox flow batteries, Carbon, 50, 828-834 (2012). https://doi.org/10.1016/j.carbon.2011.09.041
  25. P. Han, H. Wang, Z. Liu, X. Chen, W. Ma, J. Yao, Y. Zhu, and G. Cui, Graphene oxide nanoplatelets as excellent electrochemical active materials for ${VO_2}^+$/image and $V^{2+}$/$V^{3+}$ redox couples for a vanadium redox flow battery, Carbon, 49, 693-700 (2011). https://doi.org/10.1016/j.carbon.2010.10.022
  26. M. Muraoka, H. Tomonaga, and M. Nagai, Ammonia-treated brown coal and its activity for oxygen reduction reaction in polymer electrolyte fuel cell, Fuel, 97, 211-218 (2012). https://doi.org/10.1016/j.fuel.2012.03.001
  27. Z. Mou, X. Chen, Y. Du, X. Wang, P. Yang, and S. Wang, Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea, Appl. Surf. Sci., 258, 1704-1710 (2011). https://doi.org/10.1016/j.apsusc.2011.10.019
  28. P. H. Matter, L. Zhang, and U. S. Ozkan, The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction, J. Catal., 239, 83-96 (2006). https://doi.org/10.1016/j.jcat.2006.01.022
  29. R. Arrigo, M. Havecker, R. Schlogl, and D. S. Su, Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes, Chem. Commun., 4891-4893 (2008).
  30. J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, and K. M. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis, Carbon, 33, 1641-1653 (1995). https://doi.org/10.1016/0008-6223(95)00154-6
  31. M. Seredych, D. H. Jurcakova, G. O. Lu, and T. J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon, 46, 1475-1488 (2008). https://doi.org/10.1016/j.carbon.2008.06.027
  32. J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, Effect of simultaneous etching and N-doping on the surface and electrochemical properties of AC, J. Ind. Eng. Chem., 18, 116-122 (2012). https://doi.org/10.1016/j.jiec.2011.11.074
  33. Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, Jun Liu, Z. Yang, and Y. Lin, Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries, J. Power Sources, 195, 4375-4379 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.015
  34. D. Ha, S. K. Kim, D. Jung, S. Lim, D. H. Peck, B. Lee, and K. Lee, Effect of carbon felt oxidation methods on the electrode performance of vanadium redox flow battery, J. Korean Electrochem. Soc., 12, 263-270 (2009). https://doi.org/10.5229/JKES.2009.12.3.263
  35. T. Wu, K. Huang, S. Liu, S. Zhuang, D. Fang, S. Li, D. Lu, and A. Su, Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery, J. Solid state Electrochem., 16, 579-585 (2012). https://doi.org/10.1007/s10008-011-1383-y
  36. J. Kim, M. Choi, and R. Ryoo, Synthesis of mesoporous carbons with controllable N-content and their supercapacitor properties, Bull. Korea Chem. Soc., 29, 413-416 (2008). https://doi.org/10.5012/bkcs.2008.29.2.413
  37. M. J. Jung, E. Jeong, S. Cho, S. Y. Yeo, and Y. S. Lee, Effects of surface chemical properties of activated carbon modified by amino-fluorination for electric double-layer capacitor, J. Colloid Interf. Sci., 381, 152-157 (2012). https://doi.org/10.1016/j.jcis.2012.05.031
  38. W. G. Pell, B. E. Conway, and N. Marincic, Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations, J. Electroanal. Chem., 491, 9-21 (2000). https://doi.org/10.1016/S0022-0728(00)00207-2

Cited by

  1. Electromagnetic Interference Shielding Efficiency Characteristics of Ammonia-treated Graphene Oxide vol.25, pp.6, 2014, https://doi.org/10.14478/ace.2014.1105
  2. 질소가 도핑 된 흑연섬유 발열체의 제조 및 발열특성 vol.28, pp.1, 2017, https://doi.org/10.14478/ace.2016.1111
  3. A Newly Designed Fixed Bed Redox Flow Battery Based on Zinc/Nickel System vol.8, pp.3, 2017, https://doi.org/10.5229/jecst.2017.8.3.236
  4. Exploring the Role of Electrode Microstructure on the Performance of Non-Aqueous Redox Flow Batteries vol.166, pp.10, 2014, https://doi.org/10.1149/2.0611910jes