DOI QR코드

DOI QR Code

Effect of Nano Bubble Oxygen and Hydrogen Water on Microalgae

나노기포 산소수 및 수소수가 미세조류 배양에 미치는 영향

  • Choi, Soo-Jeong (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Kim, Young-Hwa (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University) ;
  • Jung, In-Ha (Research Division for Industry & Environment, Korea Atomic Energy Research Institute) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
  • 최수정 (신라대학교 의생명과학대학 생명공학과) ;
  • 김영화 (신라대학교 의생명과학대학 제약공학과) ;
  • 정인하 (한국원자력연구원) ;
  • 이재화 (신라대학교 의생명과학대학 생명공학과)
  • Received : 2014.04.04
  • Accepted : 2014.04.29
  • Published : 2014.06.10

Abstract

Microalgae Nannochloropsis oculata (N. oculta) and Chlorella vulgaris (C. vulgaris) are important sources for biodisel because of the high content of neutral lipids. Stable nano bubble is maintained for a long time and therefore it is possible for use in biotechnology. In this study, effects of nano bubble oxygen or hydrogen water on the microalgae growth were characterized. The cell growth in nano bubble water was similar to that of control, and the total lipid content was rather low. But, chlorophyll content of N. oculata grown in nanno bubble oxygen and hydrogen water increased 54% and 30%, and increased 59%, 39% in C. vulgaris. Carotenoid content also increased 21%, 25% in N. oculata and 49%, 29% in C. vulgaris grown in nano bubble oxygen and hydrogen water. From these results, nano bubble water seems to enhance the photosynthetic capacity of microalgae.

미세조류 Nannochloropsis oculata (N. oculata)와 Chlorella vulgaris (C. vulgaris)는 다른 미세조류에 비해 높은 중성지질 함유량으로 인해 바이오 디젤 생산에 중요한 자원이다. 나노기포 산소수, 수소수를 이용해 만든 배지에서 미세조류를 배양하였다. N. oculata 배양 결과 세포 성장은 대조군과 비슷하였으며 지질 함량은 대조군에 미치지 못하는 것으로 나타났다. C. vulgaris 역시 N. oculata와 비슷한 경향을 보였다. 미세조류의 광합성으로 인한 색소의 함량 변화를 알아보기 위해 클로로필과 카로티노이드 함량을 측정하였다. 클로로필 함량은 나노 기포산소수와 수소수에서 배양한 N. oculata가 대조군 보다 약 54%, 30% 증가하였으며 카로티노이드 함량은 각각 21%, 25%씩 증가함을 확인하였다. C. vulgaris의 클로로필 함량은 기포산소수와 수소수에서 대조군보다 59%, 39% 증가하였으며 카로티노이드 함량도 49%, 29% 증가하였다.

Keywords

References

  1. A. Widjaja, C.-C. Chien, and Y.-H. Ju, Study of increasing lipid production from fresh water microalgae Chlorella vulgaris, J. TICE, 40, 13-20 (2009).
  2. A. Converti, A. A. casazza, E. Y. Ortiz, P. Perego, and M. D. Borghi, Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, CEP, 48, 1146-1151 (2009).
  3. J.-H. Kim, H.-J. Park, Y.-H. Kim, H. Joo, S.-H. Lee, and J.-H. Lee, UV-induced mutagenesis of Nannochloropsis oculata for the increase of lipid accumulation and its characterization, Appl. Chem. Eng., 24(2), 155-160 (2013).
  4. H.-J. Park, Y.-H. Kim, and J.-H. Lee, Effect of alginate on the growth of Nannochloropsis oculata NIED-2145, KSBB. J. 26(3), 206-210 (2011). https://doi.org/10.7841/ksbbj.2011.26.3.206
  5. Z.-Y. Liu, G.-C. Wang, and B.-C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour. Technol. 99, 4717-4722 (2008). https://doi.org/10.1016/j.biortech.2007.09.073
  6. S. P. Loh and S. P. Lee, The effect of extraction methods on fatty acid and carotenoid compositions of marine microalgae Nannochloropsis oculata and Chaetocerros gracilis, Pertanika J. Trop. Agric. Sci., 36(2), 145-160 (2013).
  7. L. Zhang, Y. Zhang, X. Zhang, Z. Li, G. Shen, M. Ye, C. Fan, H. Fang, and J. Hu, Electrochemically controlled formation and growth of hydrogen nannobubbles, Langmuir, 22, 8109-8113 (2006). https://doi.org/10.1021/la060859f
  8. K. Tanaka and M. Matsumoto, Nano bubble-size dependence of surface tension and inside pressure, Fluid Dynamics Research, 40(7-8), 546-553 (2008). https://doi.org/10.1016/j.fluiddyn.2007.12.006
  9. M. Usei, 마이크로 버블의 호기성 여상법에 의한 하수고도처리, 첨단 환경기술, 18-24 (2007).
  10. L. Koyuncu and H. Afsar, Decomposition of dyes in textile wastewater with ozone, J. Environ. Sci. Health, 31, 1035-1041 (1996).
  11. M. Takahashi, K. Chiba, and P. Li, Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus, J. Phys. Chem., 111, 1343-1347 (2007). https://doi.org/10.1021/jp0669254
  12. M. Takahashi, Potential of microbubbles in aqueous solutions : electrical properties of the gas-water interface, J. Phy. Chem., 109, 21858-21864 (2005). https://doi.org/10.1021/jp0445270
  13. S.-Y. Chiu, C.-Y. Kao, M.-T. Tsai, S.-C. Ong, C.-H. Chen, and C.-S. Lin, Lipid accumulation and $CO_2$ utilization of Nannochloropsis oculata in response to $CO_2$ aeration, Bioresour. Technol., 100, 833-838 (2009). https://doi.org/10.1016/j.biortech.2008.06.061
  14. R. Ranjbar, R. Inoue, H. Shiraishi, T. Katsuda, and S. Katoh, High efficiency production of astaxanthin by autotrophic cultivation of Haematococcus pluvialis in a bubble column photobioreactor, Biochem. Eng. J., 39, 575-580 (2008). https://doi.org/10.1016/j.bej.2007.11.010
  15. W. B. Zimmerman, M. Zandi, H. C. H. Bandulasena, V. Tesar, D. J. Gilmour, and K. Ying, Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina, Appl. Energ., 88, 3357-3369 (2011). https://doi.org/10.1016/j.apenergy.2011.02.013
  16. S. Raso, B. V. Genugten, M. Vermue, and R. H. Wijffels, Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity, J. Appl. Phycol., 24(4), 863-871 (2012). https://doi.org/10.1007/s10811-011-9706-z
  17. J. E. Amstrong and J. A. Calder, Inhibition of light-induced pH and increase and $O_2$ evolution of marine microalgae by water-soluble components of crude and refined oils, Appl. Environ. Microbiol., 35(5), 858-862 (1978).
  18. H.-J. Park, E.-J. Jin, T. M. Jung, H. Joo, and J.-H. Lee, Optimal culture conditions for photosynthetic microalgae Nannochloropsis oculata, Appl. Chem. Eng., 21(6), 659-663 (2010).
  19. R. P. L. Guilard and J. H. Ryther, Studies of marine planktonic diatoms. 1. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran, Can. J. Microbiol., 8, 229-239 (1962). https://doi.org/10.1139/m62-029
  20. H.-J. Park, Y.-H. Kim, and J.-H. Lee, Characterization of Arthrospira platensis mutants generated by UV-B irradiation, Appl. Chem. Eng., 23, 496 (2012).
  21. W. Chen, M. Sommerfeld, and Q. Hu, Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae, Bioresour. Technol., 102, 135 (2011). https://doi.org/10.1016/j.biortech.2010.06.076
  22. E. Bertozzini, L. Galluzzi, A. Penna, and M. magnani, Application of the standard addition method for the absolute quantification of newtral lipids in microalge using Nile red, J. Microbiol. Methods., 87, 17 (2011). https://doi.org/10.1016/j.mimet.2011.06.018
  23. S.-J. Choi, Y.-H. Kim, A. Kim, and J.-H. Lee, Arthrospira platensis mutants containing high lipid content by electron beam irradiations and analysis of its fatty acid composition, Appl. Chem. Eng., 24(6), 628-632 (2013). https://doi.org/10.14478/ace.2013.1085
  24. J. H. Yoon, J.-H. Shin, and T. H. Park, Characterization of factors influencing the growth of Anabaena variabilis in a bubble column reactor, Bioresour. Technol., 99, 1204-1210 (2008). https://doi.org/10.1016/j.biortech.2007.02.012
  25. C.-G. Lee and B. O. Palsson, High-density algal photobioreators using light-emitting diodes, Biotechnol. Bioeng. 44, 1161-1167 (1994). https://doi.org/10.1002/bit.260441002
  26. E. Han, J. Huang, Y. Li, W. Wang, M. Wan, G. Shen, and J. Wang, Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by $CO_2$, Bioresour. Technol., 136, 418-424 (2013). https://doi.org/10.1016/j.biortech.2013.03.017
  27. S. H. Oh, J. G. Han, N. Y. Kim, J. S. Cho, T. B. Yim, S. Y. Lee, and H. Y. Lee, Cell Growth and Lipid Production from Fed-batch Cultivation of Chlorella minutissima according to Culture Conditions, KSBB. J. 24(4), 377 (2009).
  28. K. Ying, D. J. Gilmour, Y. Shi, and W. B. Zimmerman, Growth enhancement of Dunaliella salina by microbubble induced airlift loop bioreactor (ALB)-the relation between mass transfer and growth rate, JBNB, 4, 1-9 (2013).

Cited by

  1. Characterization of Chlorella Vulgaris Mutants Generated by EMS (Ethyl Methane Sulphonate) vol.26, pp.3, 2015, https://doi.org/10.14478/ace.2015.1007
  2. Characterization of Arthrospira platensis Cultured in Nano-bubble Hydrogen Water vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1042
  3. Isolation of Chlorella vulgaris Mutants Producing High Lipid and their Characterization vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2014.1135