DOI QR코드

DOI QR Code

Sakurajima volcano eruption detected by GOCI and geomagnetic variation analysis - A case study of the 18 Aug, 2013 eruption -

천리안 위성영상에 감지된 사쿠라지마 화산분화와 지자기 변동 분석 연구 - 2013년 8월 18일 분화를 중심으로 -

  • Kim, Kiyeon (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Hwang, Eui-Hong (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Lee, Yoon-Kyung (Korea Ocean Satellite Center, Korea Institute of Ocean Science & Technology) ;
  • Lee, Chang-Wook (National Institute of Meteorological Research, Korea Meteorological Administration)
  • 김기연 (기상청 국립기상연구소) ;
  • 황의홍 (기상청 국립기상연구소) ;
  • 이윤경 (한국해양과학기술원 해양위성센터) ;
  • 이창욱 (기상청 국립기상연구소)
  • Received : 2014.03.05
  • Accepted : 2014.04.11
  • Published : 2014.04.30

Abstract

On Aug 18, 2013, Sakurajima volcano in Japan erupted on a relatively large-scale. Geostationary Ocean Color Imager (GOCI) had used to detect volcanic ash in the surrounding area on the next day of this eruption. The geomagnetic variation has been analyzed using geomagnetic data from Cheongyang observatory in Korea and several geomagnetic observatories in Japan. First, we reconstruct geomagnetic data by principal component analysis and conduct semblance analysis by wavelet transform. Secondly, we minimize the error of solar effect by using wavelet based semblance filtering with Kp index. As a result of this study, we could confirm that the geomagnetic variation usually occur at the moment of Sakurajima volcano eruption. However, we cannot rule out the possibilities that it could have been impacted by other factors besides volcanic eruption in other variation's cases. This research is an exceptional study to analyze geomagnetic variation related with abroad volcanic eruption uncommonly in Korea. Moreover, we expect that it can help to develop further study of geomagnetic variation involved in earthquake and volcanic eruption.

2013년 8월 18일 일본의 사쿠라지마 화산에서 비교적 큰 규모의 분화가 발생하였다. 이에 본 연구에서는 천리안 위성 자료를 이용하여 화산분화 다음날 주변 지역의 화산재를 감지하였으며, 기상청 청양 지자기 관측소 자료와 함께 일본 지자기 관측소 자료를 이용하여 지자기 변동에 대해 분석하였다. 먼저, 지자기 관측 자료를 이용하여 주성분 분석을 수행하고 관측 자료의 재구성 자료를 구축하였다. 재구성된 자료는 웨이블릿 기반 셈블런스 분석을 수행하였다. 다음으로는 지자기 관측 자료의 고유값 분석을 수행하고 Kp 지수와의 웨이블릿 기반 셈블런스 필터링을 통해서 태양의 영향을 최소화하였다. 분석결과에서는 전체적으로 화산 발생 시점에서 이벤트가 발생하는 것을 확인 할 수 있었다. 다만, 일부 지자기 관측소의 경우 화산이 아닌 다른 영향을 받았을 가능성을 배제 할 수 없다. 이 연구에서는 국내 연구로는 드물게 화산 분화에 의한 지자기 영향을 분석하였으며 향후 지진 화산 연구에 도움이 될 수 있을 것으로 기대한다.

Keywords

References

  1. Choi, G.H., H.J. Kim, M.J. Nam, T.J. Lee, N.R. Han, S.K. Lee, Y.H. Song, and J.H. Suh, 2007. A study on geoelectrical structure of Jeju island using 3d mt inversion of 2d profile data, Muli-Tamsa, 10(4): 268-274 (in Korean with English abstract).
  2. Del Negro, C., G. Currenti, R. Napoli, and A. Vicari, 2004. Volcanomagnetic changes accompanying the onset of the 2002-2003 eruption of Mt. Etna (Italy). Earth and Planetary Science Letters, 229: 1-14. https://doi.org/10.1016/j.epsl.2004.10.033
  3. Nordemann, D.J.R., N.R. Rigozo, M.P. de Souza Echer, and E. Echer., 2008. Principal components and iterative regression analysis of geophysical series: Application to sunspot number(1750-2004). Computers & Geosciences, 34: 1443-1453. https://doi.org/10.1016/j.cageo.2007.09.022
  4. Christensen, A.N., 2003. Semblance filtering of airborne potential field data. In: Extended Abstracts, Proc. of 16th ASEG Conference and Exhibition, Adelaide.
  5. Cooper, G.R.J and D.R. Cowan, 2008. Comparing time series using wavelet-based semblance analysis, Computer & Geosciences, 34: 95-102. https://doi.org/10.1016/j.cageo.2007.03.009
  6. Cooper, G.R.J., 2009. Wavelet-based semblance filtering, Computer & Geosciences, 35: 1988-1991. https://doi.org/10.1016/j.cageo.2008.10.017
  7. Hattori, K., I. Takahashi, C. Yoshino, T. Nagao, J.Y. Liu, and C.F. Shieh, 2002. ULF Geomagnetic and Geopotential data, Physics and Chemistry of the Earth, 29: 409-417.
  8. Hattori, K., I. Takakhashi, C. Yoshino, N. Isezaki, H. Iwasaki, M. Harada, K. Kawabata, E. Kopytenko, P. Maltsev, V. Korepanov, O. Molchanov, M. Hayakawa, Y. Noda, T. Nagao, and S. Uyeda, 2004. ULF geomagnetic field measurements in Japan and some recent results associated with Iwateken Nairiku Hokubu Earthquake in 1998. Physics and Chemistry of the Earth, 29: 481-494. https://doi.org/10.1016/j.pce.2003.09.019
  9. Hayakawa, M., R. Kawate, O.A. Molchanov, and K. Yumoto, 1996. Results of ultra-low-frequency magnetic field measurements during Guam earthquake of 8 August 1993, Geophysical Research Letters, 23: 241-244. https://doi.org/10.1029/95GL02863
  10. Hayakawa, M., T. Itoh, K. Hattori, and K. Yunmoto, 2000. ULF electromagnetic precursors for an earthquake at Biak, Indonesia on February 17, 1996, Geophysical Research Letters, 27: 1531-1534. https://doi.org/10.1029/1999GL005432
  11. Hayakawa, M., K. Hattori, and K. Ohta, 2007. Monitoring of ULF(ultra-low-frequency) geomagnetic variation associated with earthquakes, Sensors, 7(7): 1108-1122. https://doi.org/10.3390/s7071108
  12. Ji, Y.S., S.H. Oh, and K.Y. Kim, 2012. Wavelet based semblance and eigenvalue analysis for geomagnetic variation related to microearthquakes in the Korean peninsula. Journal of Korean Earth Science Society, 33(5): 408-421. https://doi.org/10.5467/JKESS.2012.33.5.408
  13. Johnston, M.J.S., R.J. Mueller, and J. Dvorak, 1981. Volcano-magnetic observations during eruptions May-August 1980, US Geol. Surv. Prof. Pap. 1250: 183-189.
  14. Lee, T.J., S.K. Lee, Y.H. Song, and T. Uchida, 2006. Use of audio-band on the interpretation of magnetotelluric data, Mulli-Tamsa, 9(4): 261-270.
  15. Lee, T.J., S.K. Lee, C.K. Lee, I.H. Park, Y.H. Song, and T. Uchida, 2008. Three-dimensional magnetotelluric surveys for investigating possible deep geothermal regime in the mid-mountain area of Jeju island. Journal of the Korean Society for Geosystem Engineering, 45(4): 315-325.
  16. Hayakawa, M., K. Hattori and K. Ohta, 2007. Monitoring of ULF(ultra-low-frequency) geomagnetic variations associated with earthquakes, Sensors, 7(7): 1108-1122. https://doi.org/10.3390/s7071108
  17. Oh, S.H., 2009. Variation analysis of geomagnetic data observed around the event of Andong earthquake (May 2, 2009), Journal of Korean Earth Science Society, 30(6): 683-691. https://doi.org/10.5467/JKESS.2009.30.6.683
  18. Oh, S.H., B.S. Suh, and E.S. Im, 2009. Wavelet-based semblance filtering of geophysical data and its application, Journal of Korean Earth Science Society, 30(6): 692-698. https://doi.org/10.5467/JKESS.2009.30.6.692
  19. Oh, S.H., 2012. Geomagnetic variation and its relation to microearthquakes in the seismically inactive Korean peninsula. Geoscience Journal, 16(1): 47-58. https://doi.org/10.1007/s12303-012-0001-z
  20. Kawate, R., O.A. Molchanov, and M. Hayakawa, 1998. Ultra-low-frequency magnetic fields during the Guam earthquake of 8 August 1993 and their interpretation, Physics of the Earth and Planetary Interior, 105(3): 229-238. https://doi.org/10.1016/S0031-9201(97)00094-0
  21. Sasai, Y., M. Uyeshima, J. Zlotnicki, H. Utada, T. Kagiyama, T. Hasimoto, and Y, Takahashi, 2002. Magnetic and electric field observations during the 2000 activity of Miyake-jima volcano, Central Japan, Earth and Planetary Science Letters, 203: 769-777. https://doi.org/10.1016/S0012-821X(02)00857-9
  22. Yang, J.M., H.S. Lee, and S.H. Oh, 2009. A study on temporal variations of geomagnetic transfer functions and polarization values obtained at cheongyang geomagnetic observatory, Journal of Korean Earth Science Society, 30(7): 824-833 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2009.30.7.824
  23. Torrence, C., and G.P. Compo, 1998. A practical guide to wavelet analysis, Bulletin of the American Meteorological Society, 79: 61-78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
  24. Utada, H., M. Neki, and T. Kagiyama, 2000. A study of annual variations in the geomagnetic total intensity with special attention to detecting volcanomagnetic signals, Earth Planets Space, 52: 91-103. https://doi.org/10.1186/BF03351617
  25. van Frese, R.R.B., M.B. Jones, J.W. Kim, and J.H. Kim, 1997. Analysis of anomaly correlations. Geophysics, 62(1): 342-351. https://doi.org/10.1190/1.1444136
  26. Xu, J., G. Liu, J. Wu, Y. Ming, Q. Wang, D. Cui, Z. Shangguan, B. Pan, X. Lin, and J. Liu, 2012. Recent unrest of Changbaishan volcano, northeast China: a precursor of a future eruption, Geophysical Research Letters, 39, L16305: 1-7. doi:10.1029/2012GL052600.
  27. Yun, S.H., H. Taniguchi, H. Wei, and J. Liu, 2007. Volcanic crisis of the Baegdusan. Proc. of 2007 Joint Conference of the Geological Science & Technology of Korea, 130-132.
  28. Yun, S.H., 2013. Volcanological interpretation of historical eruptions of Mt. Baekdusan volcano, Journal of Korean Earth Science Society, 6: 456-459 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2013.34.6.456
  29. Yun, S.H., and J.H. Lee, 2011. Volcanological interpretation of historic record of 1702 fallout-ash from the Mt. Baegdusan, Journal of Petrological Society of Korea, 20(4): 243-25 https://doi.org/10.7854/JPSK.2011.20.4.243
  30. Yun, S.H., and J.H. Lee, 2012. Analysis of unrest signs of activity at the Baegdusan volcano, Journal of Petrological Society of Korea, 21: 1-12. https://doi.org/10.7854/JPSK.2012.21.1.001
  31. Zlotnicki, J., and M. Bof, 1998. Volcanomagnetic signals associated with the quasi-continuos activity of the andesitic Merapi volcano, Indonesia: 1990-1995, Physics of Earth and Planetary Interiors, 105: 119-130. https://doi.org/10.1016/S0031-9201(97)00085-X

Cited by

  1. 천리안 위성영상(MI)과 Landsat-8 위성영상(OLI, TIRS)을 이용한 화산재 정보 산출: 사쿠라지마 화산의 사례연구 vol.33, pp.5, 2014, https://doi.org/10.7780/kjrs.2017.33.5.1.11
  2. 지진·화산 연구에 대한 위성영상 활용 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.4.1