DOI QR코드

DOI QR Code

Analysis of Unrest Signs of Activity at the Baegdusan Volcano

백두산 화산의 전조활동 분석 연구

  • Yun, Sung-Hyo (Department of Earth Science Education, Pusan National University) ;
  • Lee, Jeong-Hyun (National Institute of Meteorological Research, Korea Meteorological Administration)
  • 윤성효 (부산대학교 지구과학교육과) ;
  • 이정현 (기상청 국립기상연구소)
  • Received : 2011.12.26
  • Accepted : 2012.03.10
  • Published : 2012.03.31

Abstract

The Baegdusan volcano is one of the most active volcanoes in northeastern Asia, and the 10th century eruption was the most voluminous eruption in the world in recent 2,000 years. During the period from 2002 to 2005, volcanic earthquakes and abnormal surface distortions by suspected subsurface magma intrusion beneath the volcano were observed in the Baegdusan area. Seismic activity has gradually increased with earthquake swarms during 2002-2003 and hundreds of seismic event in a day, especially annual peak of 2,100 in 2003. Then the number of seismic activity has declined since 2006 to the background level in 1999-2001. According to the typical frequency of volcanic earthquakes in the Baegdusan volcano, the frequency distribution of typical volcanic earthquakes between 2002 and 2005 indicates that all the main frequency of the earthquakes basically falls down less than 5 Hz and 5-10 Hz. These events are all the VT-B and LP events caused by the shallow localized fracture and intrusion of magma. The horizontal displacement measurement by GPS during the period from 2000 to 2007 of the Baegdusan stratovolcano area indicates that an inflated process has been centered at the summit caldera since 2002. The displacement between 2002 and 2003 reached at a maximum value of 4 cm. After 2003, the deformation rate of the volcano continued to decrease with unusual variation during the period from 2006 to 2007. After 2003 the vertical displacement uplift rate falls down gradually but still keeps in an uplift trend in northern slope. It is generally believed that when $^3He/^4He(R)$ in a gas sample from a hot spring exceeds $^3He/^4He(R)$ in the atmosphere, it can be concluded that mantle-source. And temperatures of hot springs are rising steadily to $83^{\circ}C$. It is unrest signals at the Baegdusan, which is potentially active. The Baegdusan volcano is now in unrest status, there is eruption threat in the near future. Intensified monitoring and emergency response plan for volcanic risk mitigation are urgent for the volcano.

우리 민족의 영산인 백두산은 동북아시아 지역에서 가장 활동적인 화산의 하나이며, 10세기 대분화는 지난 2,000년 이내에서 가장 격렬한 화산활동이었다. 백두산 천지 일원에서는 2002년에서 2005년까지 지하 마그마의 관입에 의한 화산성 지진의 급증 및 비정상적인 지표 변형이 발생하였다. 화산구조성 지진의 규모가 2002년 7월부터 갑자기 급증하였으며, 지진발생 빈도도 한 달에 수십 회에서 수백 회로 증가하였으며, 2002-2003년도에는 하루에 백 여 회의 군발(群發)지진이 발생하였으며, 2003년에는 연간 2,100여 회 발생하였고, 2006년도부터는 감소하는 추세를 보여 현재에는 1999년-2001년의 수준을 유지하고 있다. 주파수가 대체로 5 Hz 또는 5-10 Hz의 범위에 속하는 이러한 지진들은 B-형 화산구조성 지진(VT-B)과 장주기 지진(LP)으로 지하 3~5 km 천부에 위치한 마그마방 상부의 균열과 마그마의 관입에 기인하는 것이다. 2002년도부터 2009년도까지의 GPS관측에 의한 지표면의 수평변위에 의하면 2002년 이후 천지 칼데라 정상부를 중심으로 화산체가 팽창하는 것이 감지되었으며, 2002년도 대비 2003년도에는 약 4 cm 이상이었고 2003년도 이후에 그 변화율은 감소하는 경향으로 보였다. 백두산 성층화산체 사면에서의 정밀수준 측량에 의한 지표면의 수직적 팽창 또한 최대 10 cm 이상의 변위를 보였으며, 수직 변위와 수평 변위 모두 2006년도 이후 변화율은 다소 감소하는 추세를 보이나, 여전히 불안정한 상태를 보이고 있다. 온천에서 채취한 화산가스로부터 분석된 헬륨 동위원소비($^3He/^4He$)의 높은 값은 이들 가스들이 맨틀로부터 유래된 것임을 증명하고 있다. 천지 주변의 온천수의 온도가 $69^{\circ}C$에서 점진적으로 증가하여 최대 $83^{\circ}C$에 이르고 있다. 그간 비교적 큰 규모의 지진에 의한 산사태, 암벽붕괴, 화산가스에 의한 나무의 고사 등이 관찰되었고, 올해 여름 천지 칼데라 외륜산의 절벽으로부터 수차례의 암벽붕괴도 발생하였다. 이런 모든 현상들이 백두산 천지화산이 불안정한 상태에 있으며, 잠재적으로는 충분하게 분화 가능성이 있다는 것을 지시하는 것이다. 강력한 화산 감시 모니터링과 화산재해 경감을 위한 사전 방재대책이 필요한 단계라고 평가된다.

Keywords

References

  1. 기상청, 2011, 백두산 화산재 영향 분석. 2011. 2. 8. 보도 자료. 10p.
  2. 김정배, 구난희, 조법종, 강석화, 이종석, 이서행, 도성재, 윤성효, 현영남, 정치영, 이상훈, 장원석, 김병선(공저), 2010, 백두산: 현재와 미래를 말한다. 한국학중앙연구원출판부, 459p.
  3. 소원주, 윤성효, 1999, 백두산 화산의 홀로세 대분화 연구 : 개관. 한국지구과학회지, 20(5), 534-543.
  4. 윤성효, 2010, 자연재해: 백두산 화산 분화전조 현상. 한국지구과학회 2010년 추계학술발표회 초록집, 2010년 9월 30일-10월 1일 세종대학교, 3-7.
  5. 윤성효, 2011, 백두산 대폭발의 날. 해맞이출판사, 서울, 374p.
  6. 윤성효, 원종관, 이문원, 1993, 백두산 일원의 신생대 화산 활동과 화산암류의 특성 고찰. 지질학회지, 29(3), 291- 307.
  7. 윤성효, 이정현, 2010, 과거 백두산의 화산활동과 향후 분화 가능성 그리고 남한학자들의 백두산 연구 참여 방안. 대한지질학회, 대한자원환경지질학회, 한국고생물학회, 한국광물학회, 한국암석학회 추계지질과학연합학술발표회 초록집, 14.
  8. 윤성효, 최종섭, 1996, 백두산 천지 칼데라 화산의 역사 분출기록. 한국지구과학회지, 17(5), 376-382.
  9. 윤성효, 히로미추 타니구치, 하이첸 웨이, 지아치 류, 2007, 백두산 화산 위기. 대한자원환경지질학회, 대한지질공학회, 대한지질학회, 한국석유지질학회 공동학술발표회 논문집, p.130-132.
  10. 윤성효, 이정현, 한상재, 임근희, 정희윤, 2011, 백두산 화산 대응 방안에 관한 연구. 부산대학교 산학협력단, 기상청, 343p.
  11. 윤성효, 이정현, 2011, 백두산 화산의 1702년 강하화산재 기록에 대한 화산학적 해석. 암석학회지, 20(4), 243-250. https://doi.org/10.7854/JPSK.2011.20.4.243
  12. 이순환, 윤성효, 2011, 백두산 화산 분출물 확산 예측에 대기흐름장 평균화가 미치는 영향. 한국지구과학회지, 32(4), 360-372. https://doi.org/10.5467/JKESS.2011.32.4.360
  13. 좌용주, 이종익, Zheng Xiangshen, 2003, 백두산의 화산분출 연대에 대한 연구: 1. 목탄과 나무 시료에 대한 14C방사성 연대. 지질학회지, 39(3), 347-357.
  14. 高玲, 上官志冠, 魏海泉, 武成智, 2007, 长白山天池火山近期气体 地球化学的常变化. 地震地质, 21(2), 179-188.
  15. 谭雨文, 刘轶男, 马铭志, 李雪梅, 张昕, 2011, 长白山天池火山地震活动特征. 科技资讯 (SCIENCE & TECHNOLOGY INFORMATION), No.5, 213-215.
  16. 吴健平, 明跃红, 张恒荣, 2005, 2002年夏季長白山天池火山區的地震活動硏究. 地球物理学报, 48(3), 621-628.
  17. 町田洋, 新井房夫, 森脇廣, 1981, 日本海を渡ってきたテフラ. 科學, 51, 562-569.
  18. 宮本毅, 中川光弘, 田中勇三, 吉田まき技, 2004, 白頭山10世紀噴火の噴火推移, 中國東北部白頭山の 10世紀巨大噴火とその歷史効果(谷口宏充 編). 東北アジア硏究センタ一叢書 第16, 東北大學東北アジア硏究センタ一, 15-43.
  19. 早川由紀夫, 小山真人, 1998, 日本海をはさんで10世紀に相次いで起こった二つの大噴火の年月日--十和田湖と白頭山 --. 火山, 43(5), 403-407.
  20. 福澤仁之, 塚本すみ子, 塚本齊, 池田まゆみ, 岡村眞, 松岡裕美, 1998, 年縞堆積物を用いた白頭山- 苫小牧火山灰(B-Tm)の降灰年代の推定. 汽水域年究, 55-62.
  21. 张先康, 张成科, 赵金仁, 杨卓欣, 李松林, 赵建狮, 刘宝峰, 成双喜, 孙国伟, 潘素珍. 2002. 长白山天池火山区岩浆系统深部结构的深地震深硏究. 地震学报, 24(2), 135-143.
  22. 張成科, 張先康, 趙金仁, 劉寶峰, 張建獅, 楊卓欣, 海燕, 孫國偉, 2002, 長白山天池火山區及鄰近地區殼結結構探測硏究. 地球物理學報, 45(6), 812-820.
  23. Asahi TV news, 2006, Hot heat and gas eruption at the Baegdusan volcano, 2006-10-20.
  24. Clague, D.A. and Dixon, J.E., 2000, Extrinsic controls on the evolution of Hawaiian ocean island volcanoes. Geochemistry, Geophysics, Geosystems-G (super 3) 1 (Paper 1999GC000023)
  25. Decker, R.W. and Decker, B., 1991, Mountains of fire: the nature of volcanoes. Cambridge University press. New York, 8, 199p.
  26. Dunlap, C., 1996, Physical, chemical, and temporal relations among products of the 11th century eruption of Baitoushan, China/North Korea. Ph.D thesis, University of Califirnia, Santa Cruz, 215p.
  27. Fisher, R.V., Heiken, G. and Hulen, J., 1998. Volcanoes: Crucibles of Change. Princeton University Press, 334p.
  28. Gao, Q.W., 2004, Volcanic hydrothermal activities and gas-releasing characteristics of the Tianchi lake region, Changbai mountain. Acta Geoscientica Sinica, 25(3), 345-350(in Chinese with English abstract).
  29. Gill, J., Dunlap, C and McCurry, M., 1992, Large-volume, mid-latitude, Cl-rich eruption during 600-1000 AD: Baitoushan, China. Chapman Conference on Climate, Volcanism and Global change, AGU, Hilo, Hawaii, 23-27.
  30. Gillespie, M.R, and Styles, M.T., 1999, BGS Rock Classification Scheme, Volume 1: Classification of igneous rocks. British Geological Survey Research Report, (2nd edition), RR 99-06.
  31. Gudmundsson, M.T., Pedersen, R., Vogfjord, K., Thorbjarnardottir, B., Jakobsdottir, S. and Roberts, M.J., 2010, Eruption of Eyjafjallajokull Volcano, Iceland. EOS, 91, 190-191. https://doi.org/10.1029/2010EO210002
  32. Heiken, G. and Wohletz, K., 1985, Volcanic Ash. University of California Press, Berkeley, 246p.
  33. Horn, S. and Schmincke, H.U., 2000, Volatile emission during the eruption of Baitoushan Volcano(China/ North Korea) ca. 960. Bulletin of Volcanology, 61, 537-555. https://doi.org/10.1007/s004450050004
  34. Klugel, A., Hansteen, T.H. and Galipp, K., 2005, Magma storage and underplating beneath Cumbre Vieja volcano, La Palma (Canary Islands). Earth and Planetary Science Letters, 236, 211-226. https://doi.org/10.1016/j.epsl.2005.04.006
  35. Liu, G., Yang, J., Wang, L. and Sun, J., 2011, Analysis of Tianchi volcano activity in Changbai Mountain, NE China. Global Geology, 14(1), 45-53.
  36. Liu, R. and Wei, H., 1996, The large eruption of Tianchi Volcano, Changbaishan during 750-960 AD. Proceeding of the 30th International Geological Congress (IGC), Beijing, China, 18-5-4.
  37. Machida, H. and F. Arai, 1983, Extensive ash falls in and around the Sea of Japan from large, late Quaternary eruptions. Journal of Volcanology and Geothermal Research, 18, 151-164. https://doi.org/10.1016/0377-0273(83)90007-0
  38. Machida, H., H. Moriwaki, and D.C. Zhao, 1990, The recent major eruption of Changbai volcano and its environmental effects. Geographical Reports of Tokyo Metropolitan University, 25, 1-20.
  39. Nicole, A.S., Klugel, A. and Hansteen, T.H., 2009, The magmatic plumbing system beneath El Hierro (Canary Islands): constraints from phenocrysts and naturally quenched basaltic glasses in submarine rocks. Contribution to Mineralogy and Petrology, 157, 593-607. https://doi.org/10.1007/s00410-008-0354-5
  40. Oppenheimer, C., 2003, Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Progress in Physical Geography, 27(2), 230-259. https://doi.org/10.1191/0309133303pp379ra
  41. Ozawa, T. and Taniguchi, H., 2006, Detection of crustal deformation around Baitoushan volcano using JERS-1 and ENVISAT SAR interferometry. 2006 ERI Workshop 'New Generation InSAR'(Workshop: 2006-W-02).
  42. Ozawa, T. and Taniguchi, H., 2007, Detection of Crustal Deformation Associated with Volcanic Activity of Baitoushan Volcano Using SAR Interferometry, Report NIED, 71, 1-10 (in Japanese with English abstract).
  43. Pallister, J.S., Hoblitt, R.P., Crandell, D.R. and Mullineaux, L.S., 1992, Mount St. Helens a decade after the 1980 eruptions: magmatic models, chemical cycles, and a revised hazards assessment. Bulletin of Volcanology, 54, 126-146. https://doi.org/10.1007/BF00278003
  44. Sigurdsson, H., Cashdollar, S. and Sparks, S.R.J., 1982, The Eruption of Vesuvius in A. D. 79: Reconstruction from Historical and Volcanological Evidence. American Journal of Archaeology, 86(1), 39-51. https://doi.org/10.2307/504292
  45. Sims, K.W.W., Goldstein, S.J., Blichert-Toft, J., Perfit, M.R., Kelemen, P., Fornari, D.J., Michael, P.J., Murrell, M. T., Hart, S. R., DePaolo, D. J., Layne, G. D., Ball, L., Jull, M. and Bender, J.F., 2002, Chemical and isotopic constrains on the generation and transport of magma beneath the East Pacific Rise. Geochimica et Cosmochimica Acta, 66(19), 3481- 3504. https://doi.org/10.1016/S0016-7037(02)00909-2
  46. Stone, R., 2010, Is China's riskiest volcano stirring or merely biding its time?: Science, 329, 498-499.
  47. Tilling, R.I., 2000, Volcanoes notes. Geotimes, 45(5), 19.
  48. Tilling, R.I. and Dvorak, J.J., 1993, Anatomy of a basaltic volcano. Nature, 363, 125-133. https://doi.org/10.1038/363125a0
  49. USGS, 2010, VHP Photo Glossary: Effusive Eruption. 29 December 2009, retrieved 3 August 2010. http://volcanoes.usgs.gov/images/pglossary/effusive.php
  50. Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B., 2007, Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. Lithos, 96, 1-2, 315-324. https://doi.org/10.1016/j.lithos.2006.10.004
  51. Wu, J., Ming, Y. and Zhang, H., 2005, Seismic activity at the Changbaishan Tianchi volcano in the summer of 2002. Chinese Journal of Geophysics, 48(3), 621-628 (in Chinese with English abstract).
  52. Xu, J., 2011, Active volcano monitoring program of China, presentation(Session 3: Volcano monitoring). Seminar on East-Asia earthquake studies, Beijing 2011.

Cited by

  1. Surface deformation monitoring of Augustine volcano, Alaska using GPS measurement - A case study of the 2006 eruption - vol.29, pp.5, 2013, https://doi.org/10.7780/kjrs.2013.29.5.10
  2. The Study on the Possibility of Using Satellite in Monitoring Precursor of Magma Activity in the Baegdusan Volcano vol.22, pp.1, 2013, https://doi.org/10.7854/JPSK.2013.22.1.035
  3. Volcanological Interpretation of Historical Eruptions of Mt. Baekdusan Volcano vol.34, pp.6, 2013, https://doi.org/10.5467/JKESS.2013.34.6.456
  4. Prediction of the Area Inundated by Lake Effluent According to Hypothetical Collapse Scenarios of Cheonji Ground at Mt. Baekdu vol.23, pp.4, 2013, https://doi.org/10.9720/kseg.2013.4.409
  5. TITAN2D Simulations of Pyroclastic Flows from Small Scale Eruption at Mt. Baekdusan vol.34, pp.7, 2013, https://doi.org/10.5467/JKESS.2013.34.7.615
  6. Damage and Socio-Economic Impact of Volcanic Ash vol.34, pp.6, 2013, https://doi.org/10.5467/JKESS.2013.34.6.536
  7. Investigation of Potential Volcanic Risk from Mt. Baekdu by DInSAR Time Series Analysis and Atmospheric Correction vol.9, pp.2, 2017, https://doi.org/10.3390/rs9020138
  8. Geochemistry of olivine-hosted melt inclusions in the Baekdusan (Changbaishan) basalts: Implications for recycling of oceanic crustal materials into the mantle source vol.284-285, 2017, https://doi.org/10.1016/j.lithos.2017.04.006
  9. Numerical Simulation of Volcanic Ash Dispersion and Deposition during 2011 Eruption of Mt. Kirishima vol.35, pp.4, 2014, https://doi.org/10.5467/JKESS.2014.35.4.237
  10. A Study on the Change of Magma Activity from 2002 to 2009 at Mt. Baekdusan using Surface Displacement vol.34, pp.6, 2013, https://doi.org/10.5467/JKESS.2013.34.6.470
  11. Comparison of local magnitude scales in South Korea vol.51, pp.4, 2015, https://doi.org/10.14770/jgsk.2015.51.4.415
  12. Evaluation of the Giggenbach Bottle Method with Artificial Fumarolic Gases vol.34, pp.7, 2013, https://doi.org/10.5467/JKESS.2013.34.7.681
  13. Ground deformation tracking over Mt. Baekdu: A pre-evaluation of possible magma recharge by D-InSAR analysis vol.18, pp.5, 2014, https://doi.org/10.1007/s12205-013-0126-2
  14. Building Damage Functions Using Limited Available Data for Volcanic Ash Loss Estimation vol.34, pp.6, 2013, https://doi.org/10.5467/JKESS.2013.34.6.524
  15. Research Methodology for the Economic Impact Assessment of Natural Disasters and Its Applicability for the Baekdu Mountain Volcanic Disaster vol.47, pp.2, 2014, https://doi.org/10.9719/EEG.2014.47.2.133
  16. Monitoring Techniques for Active Volcanoes vol.23, pp.2, 2014, https://doi.org/10.7854/JPSK.2014.23.2.119
  17. Application of LAHARZ for Lahar Modeling in Mt. Baekdusan vol.34, pp.6, 2013, https://doi.org/10.5467/JKESS.2013.34.6.507
  18. Physical Properties of Pumice from Mt. Baekdu Volcano vol.24, pp.4, 2015, https://doi.org/10.7854/JPSK.2015.24.4.337
  19. Sakurajima volcano eruption detected by GOCI and geomagnetic variation analysis - A case study of the 18 Aug, 2013 eruption - vol.30, pp.2, 2014, https://doi.org/10.7780/kjrs.2014.30.2.9
  20. Monitoring of the Volcanic Ash Using Satellite Observation and Trajectory Analysis Model vol.30, pp.1, 2014, https://doi.org/10.7780/kjrs.2014.30.1.2
  21. Distribution of Pyroclastic Density Currents Determined by Numerical Model at Mt. Baekdu Volcano vol.23, pp.4, 2014, https://doi.org/10.7854/JPSK.2014.23.4.351
  22. A Study on the Improvement Plan of Legal System Related to the Volcanic Disasters vol.18, pp.3, 2018, https://doi.org/10.9798/KOSHAM.2018.18.3.159