DOI QR코드

DOI QR Code

Effects of Bacillus subtilis KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets

  • Hu, Yuanliang (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Dun, Yaohao (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Li, Shenao (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Zhao, Shumiao (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Peng, Nan (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Liang, Yunxiang (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
  • Received : 2013.11.21
  • Accepted : 2014.03.25
  • Published : 2014.08.01

Abstract

This research focused on the effects of different doses of Bacillus subtilis KN-42 on the growth performance, diarrhea incidence, faecal bacterial flora, and the relative number of Lactobacillus and Escherichia coli in faeces of weaned piglets to determine whether the strain can serve as a candidate antimicrobial growth promoter. A total of 360 piglets (initial body weight $7.14{\pm}0.63$ kg) weaned at $26{\pm}2$ days of age were randomly allotted to 5 treatment groups (4 pens per treatment with 18 pigs per pen) for a 28-day trial. Dietary treatments were basal diet without any antimicrobial (negative control; NC), basal diet supplemented with 120 mg/kg feed of neomycin sulfate (positive control; PC) and basal diet supplemented with $2{\times}10^9$ (L), $4{\times}10^9$ (M) and $20{\times}10^9$ (H) CFU/kg feed of B. subtilis KN-42. During the overall period, average daily gain and feed efficiency of piglets were higher in groups PC, M, and H than those in group NC (p<0.05), and all probiotics and antibiotics groups had a lower diarrhea index than group NC (p<0.05). The 16S rDNA gene-based methods were used to analyze faecal bacterial flora on day 28 of experiment. The result of denaturing gradient gel electrophoresis analysis showed that supplementation of B. subtilis KN-42 to the diet changed the bacterial communities, with a higher bacterial diversity and band number in group M than in the other four groups. Real-time polymerase chain reaction analysis showed that the relative number of Lactobacillus were higher in groups PC and H than in group NC (p<0.05), and the supplemented B. subtilis KN-42 to the diet also reduced the relative number of E. coli (p<0.05). These results suggest that dietary addition of B. subtilis KN-42 can improve the growth performance and gastrointestinal health of piglets.

Keywords

References

  1. Alexopoulos, C., I. E. Georgoulakis, A. Tzivara, S. K. Kritas, A. Siochu, and S. C. Kyriakis. 2004. Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. J. Anim. Physiol. Anim. Nutr. 88: 381-392. https://doi.org/10.1111/j.1439-0396.2004.00492.x
  2. Aliakbarpour, H. R., M. Chamani, G. Rahimi, A. A. Sadeghi, and D. Qujeq. 2012. The Bacillus subtilis and lactic acid bacteria probiotics influences intestinal mucin gene expression, histomorphology and growth performance in broilers. Asian Australas. J. Anim. Sci. 25:1285-1293. https://doi.org/10.5713/ajas.2012.12110
  3. ben Omar, N. and F. Ampe. 2000. Microbial community dynamics during production of the Mexican fermented maize dough pozol. Appl. Environ. Microbiol. 66:3664-3673. https://doi.org/10.1128/AEM.66.9.3664-3673.2000
  4. Chen, W., X. Z. Zhu, J. P. Wang, Z. X. Wang, and Y. Q. Huang. 2013. Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae fermented liquid feed on growth performance, relative organ weight, intestinal microflora, and organ antioxidant status in Landes geese. J. Anim. Sci. 91:978-985. https://doi.org/10.2527/jas.2012-5148
  5. Cui, C., C. J. Shen, G. Jia, and K. N. Wang. 2013. Effect of dietary Bacillus subtilis on proportion of Bacteroidetes and Firmicutes in swine intestine and lipid metabolism. Genet. Mol. Res. 12: 1766-1776. https://doi.org/10.4238/2013.May.23.1
  6. Eckburg, P. B., E. M. Bik, C. N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S. R. Gill, K. E. Nelson, and D. A. Relman. 2005. Diversity of the human intestinal microbial flora. Science 308:1635-1638. https://doi.org/10.1126/science.1110591
  7. Fu, C. J., J. N. Carter, Y. Li, J. H. Porter, and M. S. Kerley. 2006. Comparison of agar plate and real-time PCR on enumeration of Lactobacillus, Clostridium perfringens and total anaerobic bacteria in dog faeces. Lett. Appl. Microbiol. 42:490-494. https://doi.org/10.1111/j.1472-765X.2006.01893.x
  8. Giang, H. H., T. Q. Viet, B. Ogle, and J. E. Lindberg. 2012. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with a complex of lactic acid bacteria alone or in combination with Bacillus subtilis and Saccharomyces boulardii. Livest. Sci. 143:132-141. https://doi.org/10.1016/j.livsci.2011.09.003
  9. Gong, J., H. Yu, T. Liu, M. Li, W. Si, C. F. M. De lange, and C. Dewey. 2008. Characterization of ileal bacterial microbiota in newly-weaned pigs in response to feeding lincomycin, organic acids or herbal extract. Livest. Sci. 116:318-322. https://doi.org/10.1016/j.livsci.2008.01.001
  10. Han, K. S., P. Balan, F. Molist Gasa, and M. Boland. 2011. Green kiwifruit modulates the colonic microbiota in growing pigs. Lett. Appl. Microbiol. 52:379-385. https://doi.org/10.1111/j.1472-765X.2011.03012.x
  11. Han, W., X. L. Zhang, D. W. Wang, L. Y. Li, G. L. Liu, A. K. Li, and Y. X. Zhao. 2013. Effects of microencapsulated Enterococcus fecalis CG1.0007 on growth performance, antioxidation activity, and intestinal microbiota in broiler chickens. J. Anim. Sci. 91:4374-4382. https://doi.org/10.2527/jas.2012-5956
  12. Hong, H. A., L. H. Duc, and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29:813-835. https://doi.org/10.1016/j.femsre.2004.12.001
  13. Hu, Y., X. Yang, J. Qin, N. Lu, G. Cheng, N. Wu, Y. Pan, J. Li, L. Zhu, and X. Wang et. al. 2013. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Natr. Commun. 4. Article number 2151.
  14. Jones, S. E. and K. L. Knight. 2012. Bacillus subtilis-mediated protection from Citrobacter rodentium-associated enteric disease requires esph and functional flagella. Infect. Immun. 80:710-719. https://doi.org/10.1128/IAI.05843-11
  15. Kim, Y. I., Y. H. Lee, K. H. Kim, Y. K. Oh, Y. H. Moon, and W. S. Kwak. 2012. Effects of supplementing microbially-fermented spent mushroom substrates on growth performance and carcass characteristics of Hanwoo steers (a field study). Asian Australas. J. Anim. Sci. 25:1575-1581. https://doi.org/10.5713/ajas.2012.12251
  16. Konstantinov, S. R., A. A. Awati, B. A. Williams, B. G. Miller, P. Jones, C. R. Stokes, A. D. L. Akkermans, H. Smidt, and W. M. De Vos. 2006. Post-natal development of the porcine microbiota composition and activities. Environ. Microbiol. 8: 1191-1199. https://doi.org/10.1111/j.1462-2920.2006.01009.x
  17. Lee, D. H., Y. G. Zo, and S. J. Kim. 1996. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Appl. Environ. Microbiol. 62:3112-3120.
  18. Lee, K. W., S. H. Lee, H. S. Lillehoj, G. X. Li, S. I. Jang, U. S. Babu, M. S. Park, D. K. Kim, E. P. Lillehoj, A. P. Neumann, T. G. Rehberger, and G. R. Siragusa. 2010. Effects of direct-fed microbials on growth performance, gut morphometry, and immune characteristics in broiler chickens. Poult. Sci. 89:203-216. https://doi.org/10.3382/ps.2009-00418
  19. Lee, S. H., S. L. Ingale, J. S. Kim, K. H. Kim, A. Lokhande, E. K. Kim, I. K. Kwon, Y. H. Kim, and B. J. Chae. 2014. Effects of dietary supplementation with Bacillus subtilis LS 1-2 fermentation biomass on growth performance, nutrient digestibility, cecal microbiota and intestinal morphology of weanling pig. Anim. Feed Sci. Technol. 188:102-110. https://doi.org/10.1016/j.anifeedsci.2013.12.001
  20. Li, M., J. Gong, M. Cottrill, H. Yu, C. de Lange, J. Burton, and E. Topp. 2003. Evaluation of $QIAamp^{(R)}$ DNA Stool Mini Kit for ecological studies of gut microbiota. J. Microbiol. Methods 54: 13-20. https://doi.org/10.1016/S0167-7012(02)00260-9
  21. Li, Z., G. Yi, J. Yin, P. Sun, D. Li, and C. Knight. 2008. Effects of organic acids on growth performance, gastrointestinal pH, intestinal microbial populations and immune responses of weaned pigs. Asian Australas. J. Anim. Sci. 21:252-261. https://doi.org/10.5713/ajas.2008.70089
  22. Lopez-Siles, M., T. M. Khan, S. H. Duncan, H. J. M. Harmsen, L. J. Garcia-Gil, and H. J. Flint. 2012. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl. Environ. Microbiol. 78:420-428. https://doi.org/10.1128/AEM.06858-11
  23. Madden, U. A., G. D. Osweiler, L. Knipe, G. W. Beran, and D. C. Beitz. 1999. Effects of Eubacterium coprostanoligenes and Lactobacillus on pH, lipid content, and cholesterol of fermented pork and mutton sausage-type mixes. J. Food Sci. 64:903-908. https://doi.org/10.1111/j.1365-2621.1999.tb15937.x
  24. McCann, K. S. 2000. The diversity-stability debate. Nature 405: 228-233. https://doi.org/10.1038/35012234
  25. Nakano, M. M. and P. Zuber. 1998. Anaerobic growth of a "strict aerobe" (Bacillus subtilis). Annu. Rev. Microbiol. 52:165-190. https://doi.org/10.1146/annurev.micro.52.1.165
  26. NRC. 1998. Nutrient Requirements of Swine. 10th ed. National Academies Press, Washington, DC, USA.
  27. Petersson, A., K. J. Domig, P. Nagel, W. Zollitsch, W. Hagmuller, and W. Kneifel. 2009. Denaturing gradient gel electrophoresis (DGGE)-based monitoring of intestinal Lactobacilli and Bifidobacteria of pigs during a feeding trial. Arch. Anim. Nutr. 63:112-126. https://doi.org/10.1080/17450390902733959
  28. Pieper, R., P. Janczyk, V. Urubschurov, U. Korn, B. Pieper, and W. B. Souffrant. 2009. Effect of a single oral administration of Lactobacillus plantarum DSMZ 8862/8866 before and at the time point of weaning on intestinal microbial communities in piglets. Int. J. Food Microbiol. 130:227-232. https://doi.org/10.1016/j.ijfoodmicro.2009.01.026
  29. Pryde, S. E., S. H. Duncan, G. L. Hold, C. S. Stewart, and H. J. Flint. 2002. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217:133-139. https://doi.org/10.1111/j.1574-6968.2002.tb11467.x
  30. Ricca, D. M., C. J. Ziemer, and B. J. Kerr. 2010. Changes in bacterial communities from swine feces during continuous culture with starch. Anaerobe 16:516-521. https://doi.org/10.1016/j.anaerobe.2010.03.010
  31. Sen, S., S. L. Ingale, Y. W. Kim, J. S. Kim, K. H. Kim, J. D. Lohakare, E. K. Kim, H. S. Kim, M. H. Ryu, I. K. Kwon, and B. J. Chae. 2012. Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Res. Vet. Sci. 93: 264-268. https://doi.org/10.1016/j.rvsc.2011.05.021
  32. Sen, S., S. L. Ingale, J. S. Kim, K. H. Kim, Y. W. Kim, C. Khong, J. D. Lohakare, E. K. Kim, H. S. Kim, I. K. Kwon, and B. J. Chae. 2011. Effect of supplementation of Bacillus subtilis LS 1-2 grown on citrus-juice waste and corn-soybean meal substrate on growth performance, nutrient retention, caecal microbiology and small intestinal morphology of broilers. Asian Australas. J. Anim. Sci. 24:1120-1127. https://doi.org/10.5713/ajas.2011.10443
  33. Sindhu, S. C. and N. Khetarpaul. 2003. Effect of feeding probiotic fermented indigenous food mixture on serum cholesterol levels in mice. Nutr. Res. 23:1071-1080. https://doi.org/10.1016/S0271-5317(03)00087-3
  34. Smillie, C. S., M. B. Smith, J. Friedman, O. X. Cordero, L. A. David, and E. J. Alm. 2011. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241-244. https://doi.org/10.1038/nature10571
  35. Sokol, H., B. Pigneur, L. Watterlot, O. Lakhdari, L. G. Bermudez- Humaran, J.-J. Gratadoux, S. Blugeon, C. Bridonneau, J.-P. Furet, and G. Corthier et al. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA. 105:16731-16736. https://doi.org/10.1073/pnas.0804812105
  36. Srinivasan, S., A. Aslan, I. Xagoraraki, E. Alocilja, and J. B. Rose. 2011. Escherichia coli, Enterococci, and Bacteroides thetaiotaomicron qPCR signals through wastewater and septage treatment. Water Res. 45: 2561-2572. https://doi.org/10.1016/j.watres.2011.02.010
  37. Taras, D., W. Vahjen, M. Macha, and O. Simon. 2005. Response of performance characteristics and fecal consistency to longlasting dietary supplementation with the probiotic strain Bacillus cereus var. toyoi to sows and piglets. Arch. Anim. Nutr. 59:405-417. https://doi.org/10.1080/17450390500353168
  38. Taras, D., W. Vahjen, and O. Simon. 2007. Probiotics in pigs - modulation of their intestinal distribution and of their impact on health and performance. Livest. Sci. 108:229-231. https://doi.org/10.1016/j.livsci.2007.01.075
  39. Tsukahara, T., T. Tsuruta, N. Nakanishi, C. Hikita, M. Mochizuki, and K. Nakayama. 2013. The preventive effect of Bacillus subtilus strain DB9011 against experimental infection with enterotoxcemic Escherichia coli in weaning piglets. Anim. Sci. J. 84:316-321. https://doi.org/10.1111/asj.12003
  40. van Orsouw, N., D. Li, and J. Vijg. 1997. Denaturing gradient gel electrophoresis (DGGE) increases resolution and informativity of Alu-directed inter-repeat PCR. Mol. Cell. Probes 11:95-101. https://doi.org/10.1006/mcpr.1996.0089
  41. Vanhoutte, T., V. De Preter, E. De Brandt, K. Verbeke, J. Swings, and G. Huys. 2006. Molecular monitoring of the fecal microbiota of healthy human subjects during administration of lactulose and Saccharomyces boulardii. Appl. Environ. Microbiol. 72: 5990-5997. https://doi.org/10.1128/AEM.00233-06
  42. Vondruskova, H., R. Slamova, M. Trckova, Z. Zraly, and I. Pavlik. 2010. Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: A review. Vet. Med-Czech. 55: 199-224.
  43. Walter, J., G. W. Tannock, A. Tilsala-Timisjarvi, S. Rodtong, D. M. Loach, K. Munro, and T. Alatossava. 2000. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl. Environ. Microbiol. 66:297-303. https://doi.org/10.1128/AEM.66.1.297-303.2000
  44. Wang, S. P., L. Yang, X. S. Tang, L. C. Cai, G. Liu, X. F. Kong, F. Blachier, and Y. L. Yin. 2011. Dietary supplementation with high-dose Bacillus subtilis or Lactobacillus reuteri modulates cellular and humoral immunities and improves performance in weaned piglets. J. Food Agric. Environ. 9:181-187.
  45. Willis, W. and L. Reid. 2008. Investigating the effects of dietary probiotic feeding regimens on broiler chicken production and Campylobacter jejuni presence. Poult. Sci. 87:606-611. https://doi.org/10.3382/ps.2006-00458
  46. Zhang, Z. F., T. X. Zhou, X. Ao, and I. H. Kim. 2012. Effects of $\beta$- glucan and Bacillus subtilis on growth performance, blood profiles, relative organ weight and meat quality in broilers fed maize-soybean meal based diets. Livest. Sci. 150:419-424. https://doi.org/10.1016/j.livsci.2012.10.003
  47. Zoetendal, E. G., A. D. L. Akkermans, and W. M. De Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64: 3854-3859.

Cited by

  1. 日粮中添加枯草芽孢杆菌B10 对高脂日粮诱导的小鼠脂肪代谢及抗氧化的影响 vol.16, pp.6, 2015, https://doi.org/10.1631/jzus.B1400342
  2. Probiotic isolates from unconventional sources: a review vol.58, pp.1, 2016, https://doi.org/10.1186/s40781-016-0108-2
  3. Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production vol.101, pp.7, 2017, https://doi.org/10.1007/s00253-016-8032-4
  4. Effects of intrauterine growth retardation and Bacillus subtilis PB6 supplementation on growth performance, intestinal development and immune function of piglets during the suckling period vol.56, pp.4, 2017, https://doi.org/10.1007/s00394-016-1223-z
  5. Effects of Astragalus membranaceus fiber on growth performance, nutrient digestibility, microbial composition, VFA production, gut pH, and immunity of weaned pigs pp.20458827, 2018, https://doi.org/10.1002/mbo3.712
  6. MIYAIRI 588 on broiler and piglet zootechnical performance and prevention of necrotic enteritis vol.89, pp.6, 2018, https://doi.org/10.1111/asj.13006
  7. probiotics: an alternative to antibiotics for livestock production vol.124, pp.6, 2018, https://doi.org/10.1111/jam.13690
  8. The effects of group size and subtherapeutic antibiotic alternatives on growth performance and morbidity of nursery pigs: a model for feed additive evaluation vol.2, pp.3, 2018, https://doi.org/10.1093/tas/txy068
  9. Growth Performance and Post-Weaning Diarrhea in Piglets Fed a Diet Supplemented with Probiotic Complexes vol.28, pp.11, 2018, https://doi.org/10.4014/jmb.1807.07026
  10. Positive effects of a Clostridium butyricum-based compound probiotic on growth performance, immune responses, intestinal morphology, hypothalamic neurotransmitters, and colonic microbiota in weaned pi vol.10, pp.5, 2019, https://doi.org/10.1039/c8fo02370k
  11. Improvement of growth performance and parameters of intestinal function in liquid fed early weanling pigs1 vol.97, pp.7, 2019, https://doi.org/10.1093/jas/skz134
  12. Effect of chicken egg yolk immunoglobulins on serum biochemical profiles and intestinal bacterial populations in early‐weaned piglets vol.103, pp.5, 2019, https://doi.org/10.1111/jpn.13129
  13. Influence of Bacillus subtilis GCB‐13‐001 on growth performance, nutrient digestibility, blood characteristics, faecal microbiota and faecal score in weanling pigs vol.103, pp.6, 2019, https://doi.org/10.1111/jpn.13199
  14. Bacillus sp. probiotic supplementation diminish the Escherichia coli F4ac infection in susceptible weaned pigs by influencing the intestinal immune response, intestinal microbiota and blood metabolomi vol.10, pp.1, 2019, https://doi.org/10.1186/s40104-019-0380-3
  15. Effects of Probiotics BaSC06 on Intestinal Digestion and Absorption, Antioxidant Capacity, Microbiota Composition, and Macrophage Polarization in Pigs for Fattening vol.7, pp.None, 2014, https://doi.org/10.3389/fvets.2020.570593
  16. Microbiome Analysis Investigating the Impacts of Fermented Spent Mushroom Substrates on the Composition of Microbiota in Weaned Piglets Hindgut vol.7, pp.None, 2014, https://doi.org/10.3389/fvets.2020.584243
  17. Bacillus strains improve growth performance via enhancing digestive function and anti-disease ability in young and weaning rex rabbits vol.104, pp.10, 2014, https://doi.org/10.1007/s00253-020-10536-9
  18. Probiotics-Live Biotherapeutics: a Story of Success, Limitations, and Future Prospects-Not Only for Humans vol.12, pp.3, 2020, https://doi.org/10.1007/s12602-019-09570-5
  19. Evaluation of Bacillus licheniformis -Fermented Feed Additive as an Antibiotic Substitute: Effect on the Growth Performance, Diarrhea Incidence, and Cecal Microbiota in Weaning Piglets vol.10, pp.9, 2014, https://doi.org/10.3390/ani10091649
  20. Bacillus subtilis: a potential growth promoter in weaned pigs in comparison to carbadox vol.98, pp.9, 2014, https://doi.org/10.1093/jas/skaa290
  21. The Effect of Bacillus licheniformis -Fermented Products and Postpartum Dysgalactia Syndrome on Litter Performance Traits, Milk Composition, and Fecal Microbiota in Sows vol.10, pp.11, 2014, https://doi.org/10.3390/ani10112044
  22. Effects of Bacillus subtilis on growth performance, serum parameters, digestive enzyme, intestinal morphology, and colonic microbiota in piglets vol.10, pp.1, 2014, https://doi.org/10.1186/s13568-020-01150-z
  23. Metabolomic Profile of Weaned Pigs Challenged with E. coli and Supplemented with Carbadox or Bacillus subtilis vol.11, pp.2, 2014, https://doi.org/10.3390/metabo11020081
  24. Timely Control of Gastrointestinal Eubiosis: A Strategic Pillar of Pig Health vol.9, pp.2, 2014, https://doi.org/10.3390/microorganisms9020313
  25. Evaluation of the combined effects of different dose levels of Zinc oxide with probiotics complex supplementation on the growth performance, nutrient digestibility, faecal microbiota, noxious gas emis vol.105, pp.2, 2014, https://doi.org/10.1111/jpn.13493
  26. Effect of Lactylate and Bacillus subtilis on Growth Performance, Peripheral Blood Cell Profile, and Gut Microbiota of Nursery Pigs vol.9, pp.4, 2014, https://doi.org/10.3390/microorganisms9040803
  27. Maximum levels of cross‐contamination for 24 antimicrobial active substances in non‐target feed. Part 2: Aminoglycosides/aminocyclitols: apramycin, paromomycin, neomycin and spectinomyci vol.19, pp.10, 2021, https://doi.org/10.2903/j.efsa.2021.6853
  28. Effects of Bacillus-based probiotics on growth performance, nutrient digestibility, and intestinal health of weaned pigs vol.63, pp.6, 2014, https://doi.org/10.5187/jast.2021.e109