DOI QR코드

DOI QR Code

Removal Characteristics of Lithium Ions by Fixed-bed Column Packed with Strong-Acid Cation Exchange Resin

강산성 양이온 교환수지를 충전한 고정층에서 리튬이온의 제거특성

  • You, Hae-Na (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • Received : 2014.02.20
  • Accepted : 2014.04.24
  • Published : 2014.06.30

Abstract

The continuous experiments were carried out using fixed-bed column packed with strong-acid cation exchange resin for the removal of lithium ions from aqueous solution. The parameters such as bed height, flow rate and inlet concentration were investigated. Breakthrough time ($t_{0.05}$), saturation time ($t_{0.95}$), and total amount of lithium ion removed (mtotal) were obtained from the breakthrough curves. The results showed that $t_{0.05}$ and $t_{0.95}$ decreased with decreasing bed height, and decreased with increasing inlet concentration and flow rate. mtotal increased with increasing inlet concentration and bed height, but decreased with increasing flow rate. Thomas model and Yoon-Nelson model equations were applied to the experimental data, the results showed that the breakthrough data gave a good fit to Thomas model equation.

강산성 양이온 교환수지를 충전한 고정층 컬럼을 사용하여 수중의 리튬이온을 제거하는 연속식 실험을 수행하였다. 층 높이, 유입 유량 및 유입 농도와 같은 파라미터들을 살펴보았으며, 파과곡선으로부터 파과시간($t_{0.05}$), 포화시간($t_{0.95}$) 및 제거된 리튬이온의 총량(mtotal)을 구하였다. 실험 결과 $t_{0.05}$$t_{0.95}$는 층 높이가 감소함에 따라 감소하였고, 유입 농도와 유입 유량이 증가함에 따라 감소하였다. mtotal은 유입 유량과 층 높이가 증가함에 따라 증가하였지만, 유입 유량이 증가함에 따라서는 감소하였다. 실험자료를 토마스 모델식과 윤-넬슨 모델식을 적용한 결과, 토마스 모델식이 파과 데이터에 잘 부합하였다.

Keywords

References

  1. Chon, U., Han, G., Kim, K., and Kim, K. H., "Current Status of Lithium Resoures (in Korean)," J. Kor. Inst. Res. Rec., 19, 3-8 (2010).
  2. Kitajou, A., Suzuki, T., Nishihama, S., and Yoshizuka, K., "Selective Recovery of Lithium from Seawater Using a Novel $MnO_2$ Type Adsorbent II-Enhancement of Lithium Ion Selectivity of the Adsorbent," Ars. Sep. Acta, 2, 97-106 (2003).
  3. Yanagase, K., Tetsutaro, Y., Kentaro, K., and Matsuoka, T., "The Recovery of Lithium from Geothermal Water in the Hatchobaru Area of Kyushu," Japan Bull. Chem. Soc. Jap., 56, 2490-2498 (1983). https://doi.org/10.1246/bcsj.56.2490
  4. Kim, Y. S., In, G., and Choi, J. M., "Chemical Equilibrium and Synergism for Solvent Extraction of Trace Lithium with Thenoyltrifluoroacetone in the Presence of Trioctylphosphine Oxide," Bull. Korean Chem. Soc., 24, 1495-1500 (2003). https://doi.org/10.5012/bkcs.2003.24.10.1495
  5. Wang, F., Wang, L. J., Li J. S., Sun, X. Y., and Han, W. Q., "Adsorption Behavior and Mechanism of Cadmium on Strong-acid Cation Exchange Resin, Trans," Nonferrous Met. Soc. China, 19, 740-744 (2009). https://doi.org/10.1016/S1003-6326(08)60343-X
  6. Navarrete-Guijosa, A., Navarrete-Casas, R., Valenzuela-Calahorro, C., Lopez-Gonzalez, J. D., and Farcia-Rodriaguez, A., "Lithium Adsorption by Acid and Sodium Amberlite," Coll. Interf. Sci., 264, 60-66 (2003). https://doi.org/10.1016/S0021-9797(03)00299-6
  7. Rafati, L., Mahvi, A. H., Asgari, A. R., and Hosseini, S. S., "Removal of Chromium (VI) from Aqueous Solutions Using Lewatit FO36 Nano Ion Exchange Resin," Inter. Environ. Sci. Technol., 7, 147-156 (2010). https://doi.org/10.1007/BF03326126
  8. Kobayashi, T., Yoshimoto, M., and Nakao, K., "Preparation and Characterization of Immobilized Chelate Extractant in PVA Gel Bead for an Efficient Recovery of Copper(II) in Aqueous Solution," Ind. Eng. Chem. Res., 49, 1652-1660 (2010). https://doi.org/10.1021/ie901543w
  9. Alyuz, B., and Veli, S., "Kinetics and Equilibrium Studies for the Removal of Nickel and Zinc from Aqueous Solutions by Ion Exchange Resins," J. Hazard. Mater., 167, 482-488 (2009). https://doi.org/10.1016/j.jhazmat.2009.01.006
  10. You, H. N., Kam, S. K., and Lee, M. G., "Comparison of Lithium Ion Removal Using Three Type of Cation Exchange Resins Exchanged with K^{+}$, Na^{+}$ and H+ foams," Proceed. Kor. Environ. Sci. Soc. Conf., 22, 733-737 (2013).
  11. Hamdaoui, O., "Removal of Copper (II) from Aqueous Phase by Purolite C100-MB Cation Exchange Resin in Fixed Bed Columns: Modeling," J. Hazard. Mater., 161, 737-746 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.016
  12. Aksu, Z., and Gonen, F., "Biosorption of Phenol by Immobilized Activated Sludge in a Continuous Packed Bed: Prediction of Breakthrough Curves," Process Biochem., 39, 599-613 (2004). https://doi.org/10.1016/S0032-9592(03)00132-8
  13. Han, R., Wang, Y., Zou, W., Wang, Y., and Shi, J., "Comparison of Linear and Nonlinear Analysis in Estimating the Thomas Model Parameters for Methylene Blue Adsorption onto Natural Zeolite in Fixed Bed Column," J. Hazard. Mater., 145, 331-335 (2007). https://doi.org/10.1016/j.jhazmat.2006.12.027
  14. Juang, R. S., Kao, H. C., and Chen, W,. "Column Removal of Ni (II) from Synthetic Electroplating Waste Water Using a Strong Acid Resin," Sep. Purif. Technol., 49, 36-42 (2006). https://doi.org/10.1016/j.seppur.2005.08.003

Cited by

  1. Adsorption Characteristics of Lithium Ions from Aqueous Solution using a Novel Adsorbent SAN-LMO Beads vol.24, pp.5, 2015, https://doi.org/10.5322/JESI.2015.24.5.641