DOI QR코드

DOI QR Code

A Study on Cu Based Catalysts for Water Gas Shift Reaction to Produce Hydrogen from Waste-Derived Synthesis Gas

폐기물 가스화 합성가스로부터 수소 생산을 위한 수성가스전이 반응용 Cu 기반 촉매 연구

  • Na, Hyun-Suk (Department of Environmental Engineering, Yonsei University) ;
  • Jeong, Dae-Woon (Department of Environmental Engineering, Yonsei University) ;
  • Jang, Won-Jun (Department of Environmental Engineering, Yonsei University) ;
  • Lee, Yeol-Lim (Department of Environmental Engineering, Yonsei University) ;
  • Roh, Hyun-Seog (Department of Environmental Engineering, Yonsei University)
  • Received : 2014.05.16
  • Accepted : 2014.06.30
  • Published : 2014.06.30

Abstract

Simulated waste-derived synthesis gas has been tested for hydrogen production through water-gas shift (WGS) reaction over supported Cu catalysts prepared by co-precipitation method. $CeO_2$, $ZrO_2$, MgO, and $Al_2O_3$ were employed as supports for WGS reaction in this study. $Cu-CeO_2$ catalyst exhibited excellent catalytic activity as well as 100% $CO_2$ selectivity for WGS in severe conditions ($GHSV=40,206h^{-1}$ and CO concentration = 38.0%). In addition, $Cu-CeO_2$ catalyst showed stable CO conversion for 20h without detectable catalyst deactivation. The high activity and stability of $Cu-CeO_2$ catalyst are correlated to its easier reducibility, high oxygen mobility/storage capacity of $CeO_2$.

Keywords

References

  1. S. S. Hla, Y. Sun, G. J. Duffy, L. D. Morpeth, A. Ilyushechkin, A. Cousins, D. G. Roberts, J. H. Edwards, "Kinetics of the water-gas shift reaction over a $La_{0.7}Ce_{0.2}FeO_3$ perovskite-like catalyst using simulated coal-derived syngas at high temperature", International Journal of Hydrogen Energy, Vol. 36, No. 1, 2011, p. 518. https://doi.org/10.1016/j.ijhydene.2010.10.015
  2. Y. T. Lim, J. H. Gu, H. J. Sung, N. R. Kim, S. H. Kim, S. T. Choo, J. C. Lee, "A study on waste gasification system analysis & evaluation based on framework", Journal of Korea Society of Waste Management, Vol. 27, No. 7, 2010, p. 570.
  3. Y. Sun, S. S. Hla, G. J. Duffy, A. J. Cousins, D. French, L. D. Morpeth, J. H. Edwards, D. G. Roberts, "High temperature water-gas shift Cu catalysts supported on Ce-Al containing materials for the production of hydrogen using simulated coalderived syngas", Catalysis Communications, Vol. 12, No. 4, 2010, p. 304. https://doi.org/10.1016/j.catcom.2010.09.025
  4. D.-W. Jeong, J.-O. Shim, W.-J. Jang, H.-S. Roh, "A Study on Pt-Na/$CeO_2$ Catalysts for Single Stage Water Gas Shift Reaction", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 2, 2012, p. 111. https://doi.org/10.7316/KHNES.2012.23.2.111
  5. D.-W. Jeong, W.-J. Jang, J.-O. Shim, H.-S. Roh, "A study on Pt based catalysts for water-gas shift reaction to produce hydrogen from waste-derived synthesis gas", Journal of Korea Society of Waste Management, Vol. 30, No. 1, 2013, p. 28. https://doi.org/10.9786/kswm.2013.30.1.28
  6. X. Liu, P. Guo, S. Xie, Y. Pei, M. Qiao, K. Fan, "Effect of Cu loading on Cu/ZnO water-gas shift catalysts for shut-down/start-up operation", International Journal of Hydrogen Energy, Vol. 37, No. 8, 2012, p. 6381. https://doi.org/10.1016/j.ijhydene.2012.01.110
  7. Z.-Y. Ma, C. Yang, W. Wei, W.-H. Li, Y.-H. Sun, "Catalytic performance of copper supported on zirconia polymorphs for CO hydrogenation", Journal of Molecular Catalysis A: Chemical, Vol. 231, No. 1-2, 2005, p. 75. https://doi.org/10.1016/j.molcata.2004.12.026
  8. D.-W. Jeong, W.-J. Jang, J.-O. Shim, W.-B. Han, H.-S. Roh, U. H. Jung, W. L. Yoon, "Low-temperature water-gas shift reaction over supported Cu catalysts", Renewable Energy, Vol. 65, 2014, p. 102. https://doi.org/10.1016/j.renene.2013.07.035
  9. H. Yahiro, K. Murawaki, K. Saiki, T. Yamamoto, H. Yamaura, "Study on the supported Cu-based catalysts for the low-temperature water-gas shift reaction", Catalysis Today, Vol. 126, No. 3-4, 2007, p. 436. https://doi.org/10.1016/j.cattod.2007.06.020
  10. P. Djinovic, J. Batista, A. Pintar, "Calcination temperature and CuO loading dependence on CuO-$CeO_2$ catalyst activity for water-gas shift reaction", Applied Catalysis A: General, Vol. 347, No. 1, 2008, p. 23. https://doi.org/10.1016/j.apcata.2008.05.027
  11. Z. Yuan, J. Wang, L. Wang, W. Xie, P. Chen, Z. Hou, X. Zheng, "Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts", Bioresource Technology, Vol. 101, No. 18, 2010, p. 7099.
  12. F. E. Lopez-Suarez, A. Bueno-Lopez, M. J. Illan-Gomez, "Cu/$Al_2O_3$ catalysts for soot oxidation: Copper loading effect", Applied Catalysis B: Environmental, Vol. 84, No. 3-4, 2008, p. 651. https://doi.org/10.1016/j.apcatb.2008.05.019
  13. X. Tang, B. Zhang, Y. Li, Y. Xu, Q. Xin, W. She, "CuO/$CeO_2$ catalysts: Redox features and catalytic behaviors", Applied Catalysis A: General, Vol. 288, No. 1-2, 2005, p. 116. https://doi.org/10.1016/j.apcata.2005.04.024
  14. J. Chen, J. Zhu, Y. Zhan, X. Lin, G. Cai, K. Wei, Q. Zheng, "Characterization and catalytic performance of Cu/$CeO_2$ and Cu/MgO-$CeO_2$ catalysts for NO reduction by CO", Applied Catalysis A: General, Vol. 363, No. 1-2, 2009, p. 208. https://doi.org/10.1016/j.apcata.2009.05.017
  15. K.-W. Jeon, D.-W. Jeong, W.-J. Jang, H.-S. Na, H.-S. Roh, "A study on preferntial CO oxidation over supported Pt catalysts to produce high purity hydrogen", Trans. of the Korean Hydrogen and New Energy Society, Vol. 24, No. 5, 2013, p. 353. https://doi.org/10.7316/KHNES.2013.24.5.353
  16. G. Liang, S. S. Perry, "Deposition of copper into thin ice buffer layers on MgO(100) produces uniform and sinter-resistant nanoparticles", Surface Science, Vol. 594, No. 1-3, 2005, P. 132. https://doi.org/10.1016/j.susc.2005.07.017
  17. L. Jiang, H. Zhu, R. Razzaq, M. Zhu, C. Li, Z. Li, "Effect of zirconium addition on the structure and properties of CuO/$CeO_2$ catalysts for hightemperature water-gas shift in an IGCC system", International Journal of Hydrogen Energy, Vol. 37, No. 21, 2012, p. 15914. https://doi.org/10.1016/j.ijhydene.2012.08.055
  18. P. V. D. S. Gunawardana, H. C. Lee, D. H. Kim, "Performance of copper-ceria catalysts for water gas shift reaction in medium temperature range", International Journal of Hydrogen Energy, Vol. 34, No. 3, 2009, p. 1336. https://doi.org/10.1016/j.ijhydene.2008.11.041