DOI QR코드

DOI QR Code

Analysis of Burn Severity in Large-fire Area Using SPOT5 Images and Field Survey Data

SPOT5영상과 현장조사자료를 융합한 대형산불지역의 피해강도 분석

  • Won, Myoungsoo (Division of Forest Disaster Management, Korea Forest Research Institute) ;
  • Kim, Kyongha (Division of Forest Disaster Management, Korea Forest Research Institute) ;
  • Lee, Sangwoo (Department of Environmental Science, Konkuk University)
  • 원명수 (국립산림과학원 산림방재연구과) ;
  • 김경하 (국립산림과학원 산림방재연구과) ;
  • 이상우 (건국대학교 환경과학과)
  • Received : 2014.05.30
  • Accepted : 2014.06.24
  • Published : 2014.06.30

Abstract

For classifying fire damaged areas and analyzing burn severity of two large-fire areas damaged over 100 ha in 2011, three methods were employed utilized supervised classification, unsupervised classification and Normalized Difference Vegetation Index (NDVI). In this paper, the post-fire imageries of SPOT were used to compute the Maximum Likelihood (MLC), Minimum Distance (MIN), ISODATA, K-means, NDVI and to evaluate large-scale patterns of burn severity from 1 m to 5 m spatial resolutions. The result of the accuracy verification on burn severity from satellite images showed that average overall accuracy was 88.38 % and the Kappa coefficient was 0.8147. To compare the accuracy between burn severity and field survey at Uljin and Youngduk, two large fire sites were selected as study areas, and forty-four sampling plots were assigned in each study area for field survey. The burn severities of the study areas were estimated by analyzing burn severity (BS) classes from SPOT images taken one month after the occurrence of the fire. The applicability of composite burn index (CBI) was validated with a correlation analysis between field survey data and burn severity classified by SPOT5, and by their confusion matrix. The result showed that correlation between field survey data and BS by SPOT5 were closely correlated in both Uljin (r = -0.544 and p<0.01) and Youngduk (r = -0.616 and p<0.01). Thus, this result supported that the proposed burn severity analysis is an adequate method to measure burn severity of large fire areas in Korea.

본 연구는 2011년 100ha 이상의 대형산불 피해지인 울진과 영덕지역을 대상으로 하였으며 산불피해강도를 평가하기 위해 현장조사와 고해상도 위성영상자료 분석을 병행하였다. 위성영상자료 분석 시 산불피해지역의 피해강도를 가장 적절하게 평가할 수 있는 영상분류기법들을 비교 분석하여 최적의 피해강도 평가방법을 선정하였다. 대형산불 피해지역의 최적의 피해강도 평가기법으로는 현장조사에서 획득한 트레이닝 지역의 정보를 이용한 최대우도법을 적용하였을 때 가장 좋은 평가결과를 보였다. 산불피해강도의 정확도 검증 결과, 평균 전체정확도는 88.38%와 Kappa coefficient는 0.8147로 나타났다. 분류정확도는 최대우도법, NDVI, 최소거리법 순으로 나타났다. 산불피해강도 현장조사 결과와 위성영상자료에서 추출한 피해강도의 상관관계는 울진산불 피해지에서 r = -0.544, 영덕산불 피해지는 r = -0.616으로 나타났다.

Keywords

References

  1. Chafer, C. J., M. Noonan, and E. Macnaught, 2004: The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires. International Journal of Wildland Fire 13(2), 227-240. https://doi.org/10.1071/WF03041
  2. Cocke, A. E., P. Z. Fule, and J. E. Crouse, 2005: Comparison of burn severity assessments using differenced Normalized Burn Ratio and ground data. International Journal of Wildland Fire 14(2), 189-198. https://doi.org/10.1071/WF04010
  3. Duffy, D. A., J. Epting, J. M. Graham, T. S. Rupp, and A. D. McGuire, 2007: Analysis of Alaskan burn severity patterns using remotely sensed data. International Journal of Wildland Fire 16(3), 277-284. https://doi.org/10.1071/WF06034
  4. Hammill, K. A., and R. A. Bradstock, 2006: Remote sensing of fire severity in the Blue Mountains: influence of vegetation type and inferring fire intensity. International Journal of Wildland Fire 15(2), 213-226. https://doi.org/10.1071/WF05051
  5. Jensen J. R., 2000: Remote Sensing of the Environment: An Earth Resources Perspective (2nd ed.) Prentice Hall, NJ, USA. 204p.
  6. Key, C. H., and N. C. Benson, 2002: Fire effects monitoring and inventory protocol-landscape assessment. USDA Forest Service Fire Science Laboratory, Missoula, MT. 1-16.
  7. Key, C. H., and N. C. Benson, 2006: Landscape Assessment. In 'FIREMON: Fire Effects Monitoring and Inventory System'. Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J. eds. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-164-CD, pp. LA-1-55. (Fort Collins, CO)
  8. Korea Forest Research Institute, 2008: The field survey manual for surveying ecosystem change at the forest fire area. Research report 340. (In Korean)
  9. Korea Forest Service, 2013: The annual report of forest fire statistics in 2012. (In Korean)
  10. Lee, H. J., J. M. Lee, M. S. Won, and S. W. Lee, 2012: Development and validation of Korean composite burn index (KCBI). Journal of Korean Forest Society 101(1), 163-174. (In Korean with English abstract)
  11. Lee, S. W., M. B. Lee, Y. G. Lee, M. S. Won, J. J. Kim, and S. K. Hong, 2009: Relationship between landscape structure and burn severity at the landscape and class levels in Samchuck, South Korea. Forest Ecology and Management 258, 1594-1604. https://doi.org/10.1016/j.foreco.2009.07.017
  12. Lentile, L. B., Z. A. Holden, A. M. S. Smith, M. J. Falkowski, A. T. Hudak, P. Morgan, S. A. Lewis, P. E. Gessler, and N. C. Benson, 2006: Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire 15, 319-345. https://doi.org/10.1071/WF05097
  13. Morgan, P., C. C. Hardy, T. Swetnam, M. G. Rollins, and L. G. Long, 2001: Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. International Journal of Wildland Fire 10(3), 329-342. https://doi.org/10.1071/WF01032
  14. Won, M. S., K. S. Koo, and M. B. Lee, 2007: A quantitative analysis of severity classification and burn severity for the large forest fire areas using normalized burn ratio of Landsat imagery. The Korean Association of Geographic Information Studies 10(3), 80-92. (in Korean with English abstract)
  15. Won, M. S., K. S. Koo, and M. B. Lee, and Y. M. Son, 2008: Estimation of non-$CO_{2}$ greenhouse gases emissions from biomass burning in the Samcheok large-fire area using Landsat TM imagery. Korean Journal of Agricultural and Forest Meteorology 10(1), 17-24. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2008.10.1.017
  16. Won, M. S., K. S. Koo, M. B. Lee, W. K. Lee, and K. Y. Kang, 2012: Estimation of Non-$CO_{2}$ GHGs Emissions by Analyzing Burn Severity in the Samcheok Fire, South Korea. Journal of mountain science 9(6), 731-741. https://doi.org/10.1007/s11629-012-2399-1
  17. National wildfire coordinating group, 2005: Glossary of wildland fire terminology. US National Wildfire coordination Group Report. PMS-205, Ogden, UT.
  18. Ortiz, M. J., Formaggio, A. R., and Epiphano, J. C. N., 1997: Classification of croplands through integration of remote sensing, GIS and historical database. International Journal of Remote Sensing 18, 95-105. https://doi.org/10.1080/014311697219295
  19. Roy, D. P., L. Boschetti and S. N. Trigg, 2006: Remote sensing of fire severity: assessing the performance of the normalized burn ratio. IEEE Geoscience and Remote Sensing Letters 3(1), 12-116.
  20. van Wagtendonk, J. W., R. R. Root and C. H. Key, 2004: Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sensing of Environment 92(3), 397-408. https://doi.org/10.1016/j.rse.2003.12.015

Cited by

  1. A water stress evaluation over forest canopy using NDWI in Korean peninsula vol.31, pp.2, 2015, https://doi.org/10.7780/kjrs.2015.31.2.3