DOI QR코드

DOI QR Code

Recent Progress in Flexible/Wearable Electronics

플렉시블/웨어러블 일렉트로닉스 최신 연구동향

  • Kang, Seok Hee (Dept. of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Hong, Suck Won (Dept. of Cogno-Mechatronics Engineering, Pusan National University)
  • 강석희 (부산대학교 나노과학기술대학 인지메카트로닉스공학과) ;
  • 홍석원 (부산대학교 나노과학기술대학 인지메카트로닉스공학과)
  • Received : 2014.06.12
  • Accepted : 2014.06.17
  • Published : 2014.06.30

Abstract

Flexible devices have been developed from their rigid, heavy origins to become bendable, stretchable and portable. Such a paper displays, e-skin, textile electronics are emerging research areas and became a mainstream of overall industry. Thin film transistors, diodes and sensors built on plastic sheets, textile and other unconventional substrates have a potential applications in wearable displays, biomedical devices and electronic system. In this review, we describe current trends in technologies for flexible/wearable electronics.

Keywords

References

  1. R. H. Reuss et al. : Macroelectronics: perspectives on technology and applications, Proc. IEEE, 93 (2005) 1239-1256 https://doi.org/10.1109/JPROC.2005.851237
  2. S. P. Lacour et al. : Stretchable interconnects for elastic electronic surfaces, Proc. IEEE, 93 (2005) 1459-1467 https://doi.org/10.1109/JPROC.2005.851502
  3. G. M. Whitesides et al. : Microsolidics: fabrication of three-dimensional metallic microstructures in Poly(dimethylsiloxane), Adv. Mater., 19 (2007) 727-733 https://doi.org/10.1002/adma.200601787
  4. T. Someya et al. : Integration of organic FETs with organic photodiodes for a large area, flexible, and lightweight sheet image scanners, IEEE Trans. Electron Devices, 52 (2005) 2502-2511 https://doi.org/10.1109/TED.2005.857935
  5. T. Someya et al. : Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes, Proc. Natl. Acad. Sci. USA, 102 (2005) 123211-12325 https://doi.org/10.1073/pnas.0502392102
  6. J. A. Rogers et al. : Paper-like electronic displays: Large-area rubberstamped plastic sheets of electronics and microencapsulated electrophoretic inks, Proc. Natl. Acad. Sci. USA, 98 (2001) 4835-4840 https://doi.org/10.1073/pnas.091588098
  7. S. R. Forrest. : The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature, 428 (2004) 911-918 https://doi.org/10.1038/nature02498
  8. T.-W. Lee et al. : Organic light-emitting diodes formed by soft contact lamination, Proc. Natl. Acad. Sci. USA, 101 (2004) 429-433 https://doi.org/10.1073/pnas.0304179101
  9. M. S. White et al. : Ultrathin, highly flexible and stretchable PLEDs, Nat. Photonic., 7 (2013) 811-816 https://doi.org/10.1038/nphoton.2013.188
  10. H. M. Lee et al. : Highly conductive aluminum textile and paper for flexible and wearable electronics, Angew. Chem, 125 (2013) 7872-7877 https://doi.org/10.1002/ange.201301941
  11. J. A. Rogers et al. : Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper, Adv. Mater., 21 (2009) 3703-3707 https://doi.org/10.1002/adma.200900405
  12. Y.-L. Yang et al. : Thick-film textile-based amperometric sensors and biosensors, Analyst, 135 (2010) 1230-1234 https://doi.org/10.1039/b926339j
  13. J. Wang et al. : Electrochemical sensing based on printable temporary transfer tattoos, Chem. Commun, 48 (2012) 6794-6796 https://doi.org/10.1039/c2cc32839a
  14. M. Kaltenbrunner et al. : An ultra-lightweight design for imperceptible plastic electronics, Nature, 499 (2013) 458-465 https://doi.org/10.1038/nature12314
  15. T. Sekitani et al. : Flexible organic transistors and circuits with extreme bending stability, Nat. Mater., 9 (2010) 1015-1022 https://doi.org/10.1038/nmat2896
  16. A. Javey et al. : User-interactive electronic skin for instantaneous pressure visualization, Nat. Mater., 12 (2013) 899-904 https://doi.org/10.1038/nmat3711
  17. Z. Bao et al. : Light-emitting electronic skin, Nat. Photonics, 7 (2013) 769-771 https://doi.org/10.1038/nphoton.2013.251
  18. S.-I. Park et al. : Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays, Science, 325 (2009) 977- 981 https://doi.org/10.1126/science.1175690
  19. T.-I. Kim et al. : Injectable, cellular-scale optoelectronics with applications for wireless optogenetics, Science, 340 (2013) 211-216 https://doi.org/10.1126/science.1232437
  20. K. Suzuki et al. : Substitutional reality system: a novel experimental platform for experiencing alternative reality, Sci. Rep., 2:459 (2012) 1-9
  21. L. M Castano et al. : Smart fabric sensors and e-textile technologies: a review, Smart Mater. Struct. 23 (2014) 053001-053027 https://doi.org/10.1088/0964-1726/23/5/053001
  22. D.-H. Kim et al. : Epidermal Electronics, Science, 333 (2011) 838-843 https://doi.org/10.1126/science.1206157
  23. Z. Bao et al. : Skin-like pressure and strain sensors based on transparent elastic flms of carbon nanotubes, Nat. Nanotechnol., 6 (2012) 788- 792
  24. C.-W. Lee et al. : Fabrication and reliability test of device embedded flexible module, Journal of KWJS, 31 (2013) 84-88 (in Korean) https://doi.org/10.5781/KWJS.2013.31.3.84
  25. J. A. Rogers et al. : Multifunctional epidermal electronics printed directly onto the skin, Adv. Mater., 25 (2013) 2773-2778 https://doi.org/10.1002/adma.201204426
  26. Z. Bao et al. : A review of fabrication and applications of carbon nanotube film-based flexible electronics, Nanoscale, 5 (2013) 1727-1752 https://doi.org/10.1039/c3nr33560g
  27. S. W. Hong et al. : Solderable and electro- platable flexible electronic circuit on a porous stretchable elastomer, Nat. Commun., 3 (2012) 1-8
  28. C.-W. Lee et al. : Study on joint of micro solder bump for application of flexible electronics, Journal of KWJS, 31 (2013) 4-10 (in Korean) https://doi.org/10.5781/KWJS.2013.31.3.4
  29. J. A. Rogers et al. : Electronically programmable, reversible shape change in two- and three-dimensional hydrogel structures, Adv. Mater, 25 (2013) 1541-1546 https://doi.org/10.1002/adma.201204180
  30. J. A. Rogers et al. : Digital cameras with designs inspired by the arthropod eye, Nature, 497 (2013) 95-99 https://doi.org/10.1038/nature12083
  31. S. Bauer et al. : Ultrathin and lightweight organic solar cells with high flexibility, Nat. Commun, 3:770 (2012) 1-7
  32. L. Hu et al. : Stretchable, porous, and conductive energy textiles, Nano Lett, 10 (2010) 708-714 https://doi.org/10.1021/nl903949m
  33. J. A. Rogers et al. : Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability, Proc. Natl. Acad. Sci USA, 108 (2011) 1788-1793 https://doi.org/10.1073/pnas.1015440108
  34. J. A. Rogers et al. : Stretchable GaAs photovoltaics with designs that enable high areal coverage, Adv. Mater., 23 (2011) 986-991 https://doi.org/10.1002/adma.201003961
  35. D. S. Gray et al. : High-conductivity elastomeric electronics, Adv. Mater., 16 (2004) 393-397 https://doi.org/10.1002/adma.200306107
  36. D. Brosteaux et al. : Design and fabrication of elastic interconnections for stretchable electronic circuits, IEEE Electron Dev. Lett, 28 (2007) 552-554 https://doi.org/10.1109/LED.2007.897887
  37. K.-Y. Suh et al. : A flexible and highly sensitive strain-gauge sensor using reversible inter- locking of nanofibres, Nat. Mater., 11 (2012) 795-801 https://doi.org/10.1038/nmat3380
  38. T. Someya et al. : Stretchable active-matrix organic light-emitting diode display using printable elastic conductors, Nat. Mater., 8 (2009) 494-499 https://doi.org/10.1038/nmat2459
  39. M. Rodgers et al. : A review of wearable sensors and systems with application in rehabilitation, Journal of NeuroEngineering and Rehabilitation, 9:21 (2012) 1-17
  40. P. A. Muennig et al. : What changes in survival rates tell us about US health care. Health Affair, 29 (2010) 2105-2113 https://doi.org/10.1377/hlthaff.2010.0073
  41. S. P. Gulley et al. : If we build it, who will come? Working-age adults with chronic health care needs and the medical home. Medical Care, 49 (2011) 149-155 https://doi.org/10.1097/MLR.0b013e3182028380
  42. S. P. Gulley et al. : Ongoing coverage for ongoing care: access, utilization, and out-of-pocket spending among uninsured working-aged adults with chronic health care needs. Am. J. Public Health, 101 (2011) 368-375 https://doi.org/10.2105/AJPH.2010.191569
  43. X.-F. Teng et al. : Wearable medical systems for p-Health. IEEE Reviews in Biomedical Engineering, 1 (2008) 62-74 https://doi.org/10.1109/RBME.2008.2008248
  44. P. Bonato et al. : Wearable sensors and systems. From enabling technology to clinical applications. IEEE Eng Med Biol Mag, 29 (2010) 25-36 https://doi.org/10.1109/MEMB.2010.936554
  45. O. Brand et al. : Microsensor integration into systemson- chip. Proceedings of the IEEE, 94 (2006) 1160-1176 https://doi.org/10.1109/JPROC.2006.873618
  46. H. H. Asada et al. : Mobile monitoring with wearable photoplethysmographic biosensors. IEEE Eng. Med. Biol. Mag., 22 (2003) 28-40
  47. P. Corbishley et al. : Towards a miniaturized, wearable, battery-operated monitoring system. IEEE Trans. Biomed. Eng., 55 (2008)196-204 https://doi.org/10.1109/TBME.2007.910679
  48. C. H. Ahn et al. : Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc. IEEE, 92 (2004) 154-173 https://doi.org/10.1109/JPROC.2003.820548
  49. M. N. Nyan et al. : A wearable system for preimpact fall detection. J. Biomech., 41 (2008) 3475-3481 https://doi.org/10.1016/j.jbiomech.2008.08.009
  50. P. Bonato : Wearable sensors/systems and their impact on biomedical engineering. IEEE Eng. Med Biol. Mag., 22 (2003) 18-20
  51. X. Hu et al. : Stretchable inorganic- semiconductor electronic systems, Adv. Mater., 23 (2011) 2933-2936 https://doi.org/10.1002/adma.201100144
  52. D.-H. Kim et al. : Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neuroscience, 14 (2011) 1599-1607 https://doi.org/10.1038/nn.2973

Cited by

  1. Properties of an Internal U-Shaped Inductively Coupled Plasma Source Operated by Superimposed Dual Frequency vol.46, pp.9, 2018, https://doi.org/10.1109/TPS.2018.2845908