DOI QR코드

DOI QR Code

Uplift Bearing Capacity of Spiral Steel Peg for the Single Span Greenhouse

온실용 나선철항의 인발저항력 검토

  • Lee, Bong Guk (Graduate school, Gyeongsang National Univ.) ;
  • Yun, Sung Wook (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Choi, Man Kwon (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Lee, Si Young (Dept. of Agricultural Engineering, National Academy of Agricultural Science, RDA) ;
  • Moon, Sung Dong (Dept. of Industrial & Management Eng. Kangwon National University) ;
  • Yu, Chan (Dept. of Agricultural Eng., Gyeongsang National Univ.(Institute of Agriculture and Life Science)) ;
  • Yoon, Yong Cheol (Dept. of Agricultural Eng., Gyeongsang National Univ.(Institute of Agriculture and Life Science))
  • 이봉국 (경상대학교 대학원) ;
  • 윤성욱 (경상대학교 농업생명과학연구원) ;
  • 최만권 (경상대학교 농업생명과학연구원) ;
  • 이시영 (농촌진흥청 농업공학부 에너지환경공학과) ;
  • 문선동 (강원대학교 산업공학과) ;
  • 유찬 (경상대학교 지역환경기반공학과(농업생명과학연구원)) ;
  • 윤용철 (경상대학교 지역환경기반공학과(농업생명과학연구원))
  • Received : 2014.03.26
  • Accepted : 2014.06.03
  • Published : 2014.06.30

Abstract

This study examined the uplift bearing capacity of spiral steel pegs according to the degree of soil compaction and embedded depth in a small-scaled lab test. As a result, their uplift bearing capacity increased according to the degree of soil compaction and embedded depth. The uplift bearing capacity under the ground condition of 85% compaction rate especially recorded 48.9 kgf, 57.9 kgf, 86.2 kgf and 116.6 kgf at embedded depth of 25 cm, 30 cm, 35 cm and 40 cm, respectively, being considerably higher than under other ground conditions. There were huge differences in the uplift bearing capacity of spiral steel pegs according to the compaction conditions of ground. Their maximum uplift bearing capacity was 116.6 kgf under the ground condition of 85% compaction rate and at embedded depth of 40 cm, and it is very high considering the data of spiral steel pegs. It is thus estimated that wind damage can be effectively reduced by careful maintenance of ground condition surrounding spiral steel pegs. In addition, spiral steel pegs will be able to make a contribution to greenhouse structural stability if proper installation methods are provided including the number and interval according to the types of greenhouse as well as fixation of plastic film. The findings of the study indicate that the optimal effects of spiral steel pegs for greenhouse can be achieved at embedded depth of more than 35cm and compaction degree of more than 85%. The relative density of the model ground in the test was 67% at compaction rate of 85%.

본 연구에서는 모형실험을 통하여 다짐도 및 매입깊이에 따른 나선철항의 인발저항력을 검토하였다. 그 결과 다짐도 및 매입깊이가 증가할수록 인발저항력은 증가하는 것으로 나타났으며, 특히 다짐률 85%의 지반조건에서 인발저항력은 매입깊이 25cm, 30cm, 35cm 및 40cm별로 각각 48.9kgf, 57.9kgf, 86.2kgf 및 116.6kgf로 다른 지반조건일 때 보다 현저하게 높은 인발저항력이 나타났다. 그리고 다짐률에 따른 인발저항력은 각 매입깊이 조건별(30cm, 35cm 및 40cm)로 다짐률 75% 및 85%에서 급격하게 증가하는 유사한 경향이 나타났다. 나선철항의 인발저항력은 지반의 다짐률에 따라 상당한 차이를 보였으며 극한인발저항력의 최대값은 다짐률 85%의 지반조건 및 매입깊이 40cm에서 116.6kgf로 나타났다. 이는 나선철항의 제원을 고려해 볼 때 매우 높은 것으로 판단된다. 따라서 평소 나선철항 주변 지반의 유지관리를 철저히 한다면 바람에 대한 피해를 효과적으로 경감시켜 줄 수 있을 것으로 판단된다. 그리고 나선철항은 플라스틱 필름을 고정하는 용도뿐만 아니라 온실 형태별로 개수 및 간격 등 적절한 설치방법이 제시된다면 온실의 구조적 안정성에도 기여를 할 수 있을 것으로 예상된다. 또한 본 연구의 결과를 검토해 볼 때 온실에 나선설항의 설치시 유용한 효과를 기대하기 위해서는 매입깊이 35cm 이상 그리고 다짐률은 85%이상을 적용해야 할 것으로 판단되며, 본 실험에서 다짐률 85%에 해당하는 모형지반의 상대밀도는 67%정도 였다.

Keywords

References

  1. Kang, M. H. 1998. A experimental study on uplift capacity of cylindrical concrete foundation for pipe frame greenhouse. Master Thesis, Gyeongsang National University (in Korean)
  2. Cho, J. H. 1999. A study on the uplift capacity of plane and corrugated pile foundations for pipe frame greenhouse. Master Thesis, Gyeongsang National University (in Korean)
  3. Lee, Y. B., H. J. Jun, and J. E. Son. 2010. Protected horticulture new edition. Hyangmoonsa. Seoul, Korea. pp. 32-34.
  4. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2013a. Greenhouse status for the vegetable grown in facilities and the vegetable productions in 2012. MAFRA, Sejong, Korea.
  5. Ministry of Agriculture, Food and Rural Affairs(MAFRA). 2013b. Cultivation status of floricultural crop in 2012. MAFRA, Sejong, Korea.
  6. Ministry for Food, Agriculture, Forestry and Fisheries( MIFAFF), Rural Development Administration(RDA). 2010. Designated notice of standards to endure disaster for horticultural and special facilities. MIFAFF and RDA. Gwacheon and Suwon, Korea.
  7. Nam, S.W., and I.K. Yang. 2006. Development of a gableroofed prefabricated pipe-house for reduction of heavy snow damage. Proceeding of Bio-Environment Con. 15:201-205.
  8. Nam, S.W., and Y.S. Kim. 2009. Actual state of structures and environmental control facilities for tomato greenhouses in Chungnam region. Jour. Agri. Sci. 36(1):73-85(in Korea).
  9. Ogawa, H., I. Tsuge, Y. Sato, and S. Hoshiba. 1990. Experimental Analysis on Strength of Pipe-Houses with Ground Anchoring. Journal of the Society of Agricultural Structures. 19(3):173-182(in Japan)
  10. Rural Development Administration(RDA). 2009. The workshop for Reduction countermeasure of meteorological disasters for horticultural and special facilities. RDA, Suwon, Korea.
  11. Rural Development Administration(RDA). 2007. Guidebook for reducing of meteorological disasters of agricultural facilities. RDA, Suwon, Korea.
  12. Rural Development Administration(RDA). 2005. Damage aspects and countermeasure of horticultural facilities by meteorological disasters. RDA, Suwon, Korea..
  13. Ryu, H.R., I.H. Yu, M.W. Cho, and Y.C. Um. 2009. structural reinforcement methods and structural safety analysis for the elevated eaves height 1-2W type plastic greenhouse. J. Bio- Env. Cont. 18(3):192-199(in Korean).
  14. Shu, W.M., M.K. Choi, Y.H. Bae, J.W. Lee, and Y.C. Yoon. 2008. Structural safety analysis of a modified 1-2W type greenhouse enhanced for culturing paprika. J. Bio-Env. Cont. 17(3):197-203(in Korean).
  15. www.safekorea.go.kr
  16. www.mafar.go.kr
  17. Yoo, C.S. 2012. Effect of Screw Geometries on pull-out characteristics of screw anchor piles using reduced scale model tests. Journal of the Korean Geotechnical Society. 28(1):5-15(in Korean).
  18. Yoon, C.Y., Y.S. Shin, S.B. Bae, H.T. Kim, J.S. Choi, and W.M. Suh. 2012. Variation of indoor air temperature by using hot water piping in greenhouse. J. Agri. & Life Sci. 46(2):179-190 (in Korean).
  19. Yu, I.H., E.H. Lee, M.W. Cho, H.R. Ryu, and Y.C. Kim. 2012. Development of multi-span plastic greenhouse for tomato cultivation. J. Bio-Env. Cont. 21(4):428-436(in Korean). https://doi.org/10.12791/KSBEC.2012.21.4.428