DOI QR코드

DOI QR Code

Field Survey on the Maintenance Status of Greenhouses in Korea

온실의 유지관리 실태조사 분석

  • Choi, Man Kwon (Institute of Agriculture & Life Science, Gyeongsang National Univ.) ;
  • Yun, Sung Wook (Institute of Agriculture & Life Science, Gyeongsang National Univ.) ;
  • Kim, Hyeon Tae (Dept. of Bio-Industrial Machinery Eng., Gyeongsang National Univ. (Institute of Agriculture and Life Science)) ;
  • Lee, Si Young (Dept. of Agricultural Eng., National Academy of Agricultural Science, RDA) ;
  • Yoon, Yong Cheol (Dept. of Agricultural Eng., Gyeongsang National Univ.(Institute of Agriculture and Life Science))
  • 최만권 (경상대학교 농업생명과학연구원) ;
  • 윤성욱 (경상대학교 농업생명과학연구원) ;
  • 김현태 (경상대학교 생물산업기계공학과(농업생명과학연구원)) ;
  • 이시영 (농촌진흥청 농업공학부 에너지환경공학과) ;
  • 윤용철 (경상대학교 지역환경기반공학과(농업생명과학연구원))
  • Received : 2014.06.09
  • Accepted : 2014.06.18
  • Published : 2014.06.30

Abstract

The purpose of this study was to investigate greenhouse maintenance by farms by looking into greenhouses across the nation for greenhouse specification, disaster-resistance greenhouse construction, types and degree of damage due to natural disasters, pre-inspection in case of typhoon or heavy snow forecast, and fire-fighting facilities to prevent a fire. The findings were summarized as follows: as for greenhouse specification, the highest proportion of them were 90 m or longer both in single- and multi-span greenhouses in terms of length; 8 m or wider and 7.0~7.9 m in single- and multi-span greenhouses, respectively, in terms of width; 1.5~1.9 m and 2.0~2.9 m in single-and multi-span greenhouses, respectively, in terms of height; and 3.0~3.9 m and 6 m in single- and multi-span greenhouses, respectively, in terms of diameter. As for disaster-resistance greenhouses, farmers were reluctant to install such greenhouses. The low distribution of disaster-resistance greenhouses was attributed to the greenhouses built dependent on the old practice, the greenhouses already completed, and relatively high construction costs. As for damage by natural disasters, greenhouses were subject to more damage by typhoons than heavy snow. They mainly inspected the ceiling and side windows, entrances, and fixation bands for covering materials in case of typhoon forecast and the heating devices in case of heavy snow forecast. As for repair methods for greenhouse pipe corrosion, they preferred partial replacement to painting and did not use stiffeners for structures to prevent a natural disaster in most cases. As for the maintenance of greenhouse covering materials, most farmers inspected their sealing property but did not clean the coverings for light transmission. The destruction of structural materials can be prevented by eliminating greenhouse covering materials during a typhoon, but they were not able to do so because of the covering material replacement costs and the crops they were growing. The study also examined whether greenhouse farms had fire-fighting facilities to prevent a fire and found that they lacked the perception of greenhouse fire prevention to a great degree.

본 연구는 농가들의 온실 유지관리 실태를 알아보기 위해서 국내에 보급되어 있는 온실에 대해 전국을 대상으로 온실규격, 자연재해 예방 및 피해상황, 온실 구조재, 온실 피복재 등에 관한 실태를 조사하여 자료를 분석하였다. 그 결과를 요약하면 다음과 같다. 온실의 규격의 경우, 길이는 단동 및 연동 온실 모두 90m이상이 가장 많았다. 폭은 단동온실 및 연동 온실이 각각 8m이상 및 7.0~7.9m, 측고 1.5~1.9m 및 2.0~2.9m, 동고 3.0~3.9m 및 6m가 가장 높은 비율을 차지하는 것으로 나타났다. 내재해형 온실을 조사한 결과 농가에서 내재해형 온실 설치를 기피하는 것으로 조사되었다. 온실의 자연재해 피해는 대설 보다 태풍에 대한 피해를 많이 받는 것으로 조사되었다. 자연재해 예보 시 점검사항의 경우, 태풍 예보가 있을 때에는 천창, 측창, 출입문 및 피복재 고정밴드를 주로 점검하며, 대설 예보가 있을 때에는 난방기를 주로 점검하는 것으로 나타났다. 온실파이프에 부식이 발생 시 보수방법은 도색 보다는 부분적인 교체를 많이 하고, 자연재해 예방을 위한 구조물의 보강재를 대부분 사용하지 않는 것으로 나타났다. 온실 피복재의 유지관리는 대부분의 농가에서 피복재 밀폐성을 점검하는 것으로 나타났지만, 광 투과를 위한 피복재의 청소는 대부분 하지 않는 것으로 나타났다. 태풍시 온실 피복재를 제거하면 구조재 파괴를 막을 수 있는데 그렇게 못하는 이유는 피복재의 교체비용, 재배작물 때문인 것으로 파악되었다. 그리고 온실농가에서 화재예방을 위한 소방설비 구비 여부에 대해 조사한 결과, 온실의 화재예방 인식이 많이 부족한 것으로 나타났다.

Keywords

References

  1. Gyeongsangbuk-do Agricultural Research & Extension Services( GBA). 1995. Structural design of plastic greenhouse for prevention of meteorological disaster. ed. Gyeongsangbuk- do Agricultural Research & Extension services, Gyengsangbuk- do, Korea (in Korean).
  2. http://www.naver.com
  3. http://www.mafra.go.kr
  4. Jeollanam-do Agricultural Research & Extension Services( JNA). 2006. The field survey report on heavy snow damage in agriculture in 2005. ed. Jeollanam-do Agricultural Research & Extension Services, Jeollanam-do, Korea (in Korean).
  5. Jung, H.K., K.M. Lee, and S.K. Park. 1996. Analysis of research for the actual state and management of automated horticultural facilities. J. Bio. Fac. Env. 5(2): 174-186 (in Korean)
  6. Ministry for Food, Agriculture, Forestry and Fisheries( MIFAFF). 2012. Greenhouse status for the vegetable grown in facilities and the vegetable productions in 2011. ed. MIFAFF, Gwacheon, Korea (in Korean).
  7. Ministry for Food, Agriculture, Forestry and Fisheries( MIFAFF) and Rural Development Administration( RAD). 2010. Design and construction code on horticultural and herbal facilities for disaster resistance. ed. Gwacheon and Suwon, Korea (in Korean).
  8. Ministry of Agriculture, Food and Rural Affairs(MAFRA). 2013a. Greenhouse status for the vegetable grown in facilities and the vegetable productions in 2012. ed. MAFRA, Sejong, Korea (in Korean).
  9. Ministry of Agriculture, Food and Rural Affairs(MAFRA). 2013b. Cultivation status of floricultural crop in 2012. ed. MAFRA, Sejong, Korea (in Korean).
  10. Mistriotis, A., G.P.A. Bot, P. Picuno, and G. Scarascia- Mugnozza. 1997. Analysis of the effciency of greenhouse ventilation using computational fluid dynamics. Agric. For. Meteorol. 85:217-228. https://doi.org/10.1016/S0168-1923(96)02400-8
  11. Nam, S.W., and I.H. Yu. 2000, A field survey on the structures and maintenance status of pipe framed greenhouse. J. the KSAE. 42(4): 106-114 (in Korean)
  12. Nam, S.W., and Y.S. Kim. 2009. Actual state of structures and environmental control facilities for tomato greenhouses in Chungnam region. Jour. Agri. Sci. 36(1):73-85 (in Korean).
  13. National Greenhouse Manufactures Association(NGMA). 2004. Structural Design Manual. ed. NGMA, PA, USA.
  14. Shu, W.M., M.K. Choi, Y.H. Bae, J.W. Lee, and Y.C. Yoon. 2008. Structural safety analysis of a modified 1-2W type greenhouse enhanced for culturing paprika. J. Bio-Env. Cont. 17(3):197-203 (in Korean).
  15. Yu, I.H., E.H. Lee, M.W. Cho, H.R. Ryu, and Y.C. Kim. 2012. Development of multi-span plastic greenhouse for tomato cultivation. J. Bio-Env. Cont. 21(4):428-436 (in Korean). https://doi.org/10.12791/KSBEC.2012.21.4.428
  16. Ryu, H.R., I.H. Yu, M.W. Cho, and Y.C. Um. 2009. Structural reinforcement methods and structural safety analysis for the elevated eaves height 1-2W type plastic greenhouse. J. Bio- Env. Cont. 18(3):192-199 (in Korean).
  17. Rural Development Corporation(RDC). 1995. Greenhouse structural requirements. ed. RDC, Uiwang, Korea (in Korean).
  18. Rural Development Adminstration(RDA). 2000. Agricultural disasters countermeasure and its technology. ed. RDA, Suwon, Korea (in Korean).
  19. Rural Development Administration(RDA). 2005. Damage aspects and countermeasure of horticultural facilities by meteorological disasters. ed. RDA, Suwon, Korea (in Korean).
  20. Rural Development Adminstration(RDA). 2007. A guide book for meteorological disasters reduction of agricultural facilities. ed. RDA, Suwon, Korea (in Korean).
  21. Rural Development Administration(RDA). 2009. The workshop for Reduction countermeasure of meteorological disasters for horticultural and special facilities. ed. RDA, Suwon, Korea (in Korean).