DOI QR코드

DOI QR Code

Measuring Water Content Characteristics by Using Frequency Domain Reflectometry Sensor in Coconut Coir Substrate

FDR(Frequency Domain Reflectometry)센서를 이용한 코코넛 코이어 배지내 수분특성 측정

  • Park, Sung Tae (Department of Environmental Horticulture, The university of Seoul Seoul) ;
  • Jung, Geum Hyang (Technology Service Division, National Institure of Horticultural & Herbal Science) ;
  • Yoo, Hyung Joo (Department of Environmental Horticulture, The university of Seoul Seoul) ;
  • Choi, Eun-Young (Department of Green Technology Convergence, KonKuk University) ;
  • Choi, Ki-Young (Department of Controlled Agriculture, Kangwon National University) ;
  • Lee, Yong-Beom (Department of Environmental Horticulture, The university of Seoul Seoul)
  • 박성태 (서울시립대학교 환경원예학과) ;
  • 정금향 (국립원예특작과학원 기술지원과) ;
  • 유형주 (서울시립대학교 환경원예학과) ;
  • 최은영 (건국대학교 녹색기술융합학과) ;
  • 최기영 (강원대학교 시설농업학과) ;
  • 이용범 (서울시립대학교 환경원예학과)
  • Received : 2014.02.20
  • Accepted : 2014.06.18
  • Published : 2014.06.30

Abstract

This experiment has investigated suitable methods to improve precision water content monitoring of coconut coir substrates to control irrigation by frequency domain reflectometry(FDR) sensors. Specifically, water content changes and variations were observed at different sensing distances and positions from the irrigation dripper location, and different spaces between the FDR sensors with or without noise filters. Commercial coconut coir substrates containing different ratios of dust and chips(10:0, 7:3, 5:5, 3:7) were used. On the upper side and the side of the substrates, a FDR sensor was used at 5, 10, 20, 30cm distances respectively from the irrigation dripper point, and water content was measured by time after the irrigation. In the glass beads, sensors were installed with or without noise filtering. Closer sensing distance had a higher water content increasing rate, regardless of different coir substrate ratios. There were no differencies of water content increasing rates in 10:0 and 3:7 substrates between the upper side and the side. Whereas, 7:3 and 5:5 substrates showed higher increasing rates on the upper side measurements. Substrates with higher ratios of chip(3:7) had lower increasing rates than others. And, with noise filters, the exatitude of measurement was improved because the variation and deviation were reduced. Therefore, in coconut coir with FDR sensors, an efficient water content measurment to control irrigations can be achieved by installing sensors closer to an irrigation point and upper side of substrates with noise filters.

본 연구는 FDR(Frequency Domain Reflectometry) 센서를 이용하여 코코넛 코이어 배지에서 급액 공급관리에 적합한 수분측정 장소를 찾고 보다 정밀한 측정 방안을 제시하기 위한 기초 실험으로 급액구에서의 측정거리와 위치 그리고 노이즈 필터 사용에 따른 수분변화와 편차를 조사하였다. 시판되는 코코넛 코이어 슬라브 중 coir dust와 chip의 함량이 10:0, 7:3, 5:5, 3:7인 배지들을 사용했고 배지 윗면과 측면에 급액구부터 5, 10, 20, 30cm의 거리를 두어 센서를 설치하여 동일한 급액을 공급한 후 수분변화를 측정하였으며, 노이즈 필터 사용 여부에 따른 수분변화는 내부가 균일한 인공토양인 글라스 비드를 포수하여 설치간격 0, 6, 12, 21cm에서 측정하였다. 배지조성에 상관없이 센서가 급액구에 가까울수록 높은 수분함량 증가를 나타내었다. 배지 조성 3:7과 10:0에서는 윗면과 측면 측정에 따른 배지 수분함량 변화 특성이 차이를 보이지 않았으나 5:5와 7:3에서는 윗면을 측정시 보다 높은 수분함량 증가를 보였다. Chip 함량이 상대적으로 많은 3:7 배지에서는 다른 배지들보다 수분함량 증가가 낮았다. 노이즈 필터를 사용하게 되면 측정치 변동과 편차가 감소하였다. 따라서, 코코넛 코이어 배지에서 FDR센서를 이용해 배지 수분 계측시 급액구에 가까운 거리의 윗면을 측정하는 것이 급액 이후 배지내 변화를 관측이 용이하다. 다수의 센서를 사용하여 측정할 경우에는 센서간 간격을 21cm 이상으로 넓게 설치하도록 하며, 노이즈 필터는 측정 안정성 향상을 위해 사용을 권장한다.

Keywords

References

  1. Choi, E.Y., K.Y. Choi, and Y.B. Lee. 2013. Scheduling nondrainage irrigation in coir substrate hydroponics with differ- ent percentages of chips and dust for tomato cultivation using a frequency domain reflectometry sensor. Protected Horticulture and Plant Factory 22(3):248-255. https://doi.org/10.12791/KSBEC.2013.22.3.248
  2. Gaskin, G.J. and J.D. Miller. 1996. Measurment of soil water content using a simplified impedance measuring technique. Journal of Agricultural Engineering Research 63(2):153-159. https://doi.org/10.1006/jaer.1996.0017
  3. Hwang, Y.H., C.G. An, Y.H. Chang, H.S. Yoon, J.U. An, G.M. Shon, C.W. Rho, and B.R. Jeong. 2012. Effect of zero drainage using drainage zero sensor on root zone environment, growth and yield in tomato rockwool culture. Journal of Bio-Environment Control 21(4):398-403. https://doi.org/10.12791/KSBEC.2012.21.4.398
  4. Kang, S.S., H.Y. Gong, H.C. J, Y.H. Kim, S.Y. Hong, and S.D. Hong. 2010. Evaluation of biomass and nitrogen status in paddy rice using ground-based remote sensors. Journal of Soil Science and Fertilizer 43(6):954-961.
  5. Kim, H.J., S.W. Ahn, K.H. Han, J.Y. Choi, S.O. Chung, M.Y. Roh, and S.O. Hur. 2013. Comparison study of water tension and content characteristics in differently textured soils under automatic drip irrigation. Protected Horticulture and Plant Factory 22(4):341-348.
  6. Kim, M. and G.C. Jeong. 2005. Evaluation of oil infiltration behavior in porous media using dielectric response. The Journal of Engineering Geology 15(1):29-39.
  7. Kim, M., G.C. Jeong, and C.K. Park. 2004. A development of dielectric measurement system for detecting physical parameters of ground in subsurface dam. The Journal of Engineering Geology 14(4):361-369.
  8. Ledieu, J., P. De Ridder, P. De Clerck, and S. Dautrebande. 1986. A method of measuring soil moisture by time-domain reflectometry. Journal of Hydrology 88(3):319-328. https://doi.org/10.1016/0022-1694(86)90097-1
  9. Park, J.S., N.H. Tai, T.I. An, and J.E. Son. 2009. Analysis of moisture characteristics in rockwool slabs using time domain reflectometry (TDR) sensors and their applications to paprika cultivation. Journal of Bio-Environment Control 18(3):238-243.
  10. Park, S.T., K.Y. Choi, and Y.B. Lee. 2010. Water content characteristics of coconut coir substrates on different mixture ratios and irrigation rates and times. Korean Journal of Horticultural Science and Technology 28(2):227-233.
  11. Rhee, H.C., G.L. Choi, J.W. Jeong, M.H. Cho, K.H. Yeo, D.M. Kim, C.G. An, and D.Y. Lee. 2013. Effect of soil water potential on the fruit quality and yield in fertigation cultivation of paprika in summer. Protected Horticulture and Plant Factory 22(4):378-384. https://doi.org/10.12791/KSBEC.2013.22.4.378
  12. Rhee, H.C., T.C. Seo, G.L. Choi, M.Y. Roh, and M.W. Cho. 2010. Effect of air humidity and water content of medium on the growth and physiological disorder of paprika in summer hydroponics. Journal of Bio-Environment Control 19(4):305-310.
  13. Seo, K.K., Y.S. Kim, and J.S. Park. 2011. Design of adaptive neuro-fuzzy inference system based automatic control system for integrated environment. Journal of Bio-Environment Control 20(3):169-175.
  14. Sim, S.Y. and Y.S. Kim. 2009a. Improvement of water and fertilizer use efficiency by daily last irrigation time for tomato perlite bag culture. Journal of Bio-Environment Control 18(4):408-412.
  15. Sim, S.Y. and Y.S. Kim. 2009b. Management of Dripper Position in Tomato Perlite Bag Culture. Journal of Bio-Environment Control 18(4):413-419.
  16. Starr, J.L. and I.C. Paltineanu. 1998. Soil water dynamics using multisensor capacitance probes in nontraffic interrows of corn. Soil Science Society of America Journal 62(1):114-122. https://doi.org/10.2136/sssaj1998.03615995006200010015x
  17. Topp, G.C., J.L. Davis, and A.P. Annan. 1980. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research 16(3):574-582. https://doi.org/10.1029/WR016i003p00574
  18. Veldkamp, E. and J.J. O'Brien. 2000. Calibration of a frequency domain reflectometry sensor for humide tropical soils of volcanic origin. Soil Science Society of America Journal 64(5):1549-1553. https://doi.org/10.2136/sssaj2000.6451549x
  19. Yeom, T.H., S.M. Park, H.I. Kwon, S.K. Hwang, and J. Kim. 2013. A smart farming system based on visible light communication. The Journal of Korea Information and Communications Society 38(5):479-485.
  20. Yoo, S.H., M.E. Park, G.H. Han, and B.S. Bae. 1999. Monitoring of water content and electrical conductivity in paddy soil profile by time domain reflectometry. Journal of Soil Science and Fertilizer 32(4):365-374.