DOI QR코드

DOI QR Code

Open circuit voltage increase by substituted spacer and thieno[3,4-c]pyrrole-4,6-dione for polymer solar cells

  • Song, Kwan Wook (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Choi, Min Hee (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Han, Myung Hee (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Moon, Doo Kyung (Department of Materials Chemistry and Engineering, Konkuk University)
  • Received : 2013.02.07
  • Accepted : 2013.04.28
  • Published : 2014.03.25

Abstract

We reported on two donor polymers containing thieno[3,4-c]pyrrole-4,6-dione(TPD) derivatives as electron withdrawing units for organic photovoltaics (OPVs). To control molecular weight and solubility of polymers, hexyl side chains are inserted to thiophene spacers. Due to the electron donating characteristic of hexyl side chains, highest occupied molecular orbital (HOMO) energy level of polymer is decreased as 0.18 eV, whereas the open circuit voltage is increased to 1.08 V. When bulk heterojunction devices were fabricated, the best PCE value of 0.360% ($V_{OC}$ = 0.89 V, $J_{SC}=1.2mA/cm^2$, FF = 36.3%) under $100mW/cm^2$ irradiation.

Keywords

References

  1. H. Bronstein, Z. Chen, R.S. Ashraf, W. Zhang, J. Du, J.R. Durrant, P.S. Tuladhar, K. Song, S.E. Watkins, Y. Geerts, M.M. Wienk, R.A.J. Janssen, T. Anthopoulos, H. Sirringhaus, M. Heeney, I. McCulloch, Journal of the American Chemical Society 133 (2011) 3272. https://doi.org/10.1021/ja110619k
  2. K.H. Ong, S.L. Lim, H.S. Tan, H.K. Wong, J. Li, Z. Ma, L.C.H. Moh, S.H. Lim, J.C. de Mello, Z.K. Chen, Advanced Materials 23 (2011) 1409. https://doi.org/10.1002/adma.201003903
  3. G. Zhao, Y. He, C. He, H. Fan, Y. Zhao, Y. Li, Solar Energy Materials and Solar Cells 95 (2011) 704. https://doi.org/10.1016/j.solmat.2010.10.007
  4. M. Manceau, E. Bundgaard, J.E. Carle, O. Hagemann, M. Helgesen, R. Søndergaard, M. Jorgensen, F.C. Krebs, Journal of Materials Chemistry 21 (2011) 4132. https://doi.org/10.1039/c0jm03105d
  5. L. Huo, J. Hou, S. Zhang, H.Y. Chen, Y. Yang, Angewandte Chemie International Edition 49 (2010) 1500. https://doi.org/10.1002/anie.200906934
  6. Y. Zou, A. Najari, P. Berrouard, S. Beaupre, B.R. Aich, Y. Tao, M. Leclerc, Journal of the American Chemical Society 132 (2010) 5330. https://doi.org/10.1021/ja101888b
  7. R.S. Ashraf, J. Gilot, R.A.J. Janssen, Solar Energy Materials and Solar Cells 94 (2010) 1759. https://doi.org/10.1016/j.solmat.2010.05.042
  8. J.Y. Lee, W.S. Shin, J.R. Haw, D.K. Moon, Journal of Materials Chemistry 19 (2009) 4938. https://doi.org/10.1039/b823536h
  9. Y. Li, P. Sonar, S.P. Singh, M.S. Soh, M. vanMeurs, J. Tan, Journal of the American Chemical Society 133 (2011) 2198. https://doi.org/10.1021/ja1085996
  10. P.M. Beaujuge, W. Pisula, H.N. Tsao, S. Ellinger, K. Mullen, J.R. Reynolds, Journal of the American Chemical Society 131 (2009) 7514. https://doi.org/10.1021/ja900519k
  11. B.S. Ong, Y. Wu, Y. Li, P. Liu, H. Pan, Chemistry: A European Journal 14 (2008) 4766. https://doi.org/10.1002/chem.200701717
  12. J. Wang, C. Zhang, C. Zhong, S. Hu, X. Chang, Y. Mo, X. Chen, H. Wu, Macromolecules 44 (2011) 17. https://doi.org/10.1021/ma102446b
  13. J.Y. Lee, M.H. Choi, D.K. Moon, J.R. Haw, Journal of Industrial and Engineering Chemistry 16 (2010) 395. https://doi.org/10.1016/j.jiec.2009.08.003
  14. K.S. Yook, J.Y. Lee, Journal of Industrial and Engineering Chemistry 16 (2010) 230. https://doi.org/10.1016/j.jiec.2010.01.059
  15. S.O. Kim, H.C. Jung, M.J. Lee, C. Jun, Y.H. Kim, S.K. Kwon, Journal of Polymer Science Part A: Polymer Chemistry 47 (2009) 5908. https://doi.org/10.1002/pola.23636
  16. Z.-G. Zhang, J. Wang, Journal of Materials Chemistry 22 (2012) 4178. https://doi.org/10.1039/c2jm14951f
  17. L. Huo, L. Ye, Y. Wu, Z. Li, X. Guo, M. Zhang, S. Zhang, J. Hou, Macromolecules 45 (2012) 6923. https://doi.org/10.1021/ma301254x
  18. M. Jorgensen, K. Norrman, F.C. Krebs, Solar Energy Materials and Solar Cells 92 (2008) 686. https://doi.org/10.1016/j.solmat.2008.01.005
  19. F.C. Krebs, J. Fyenbo, M. Jorgensen, Journal of Materials Chemistry 20 (2010) 8994. https://doi.org/10.1039/c0jm01178a
  20. F.C. Krebs, T. Tromholt, M. Jorgensen, Nanoscale 2 (2010) 873. https://doi.org/10.1039/b9nr00430k
  21. F.C. Krebs, T.D. Nielsen, J. Fyenbo, M. Wadstrom, M.S. Pedersen, Energy and Environmental Science 3 (2010) 512. https://doi.org/10.1039/b918441d
  22. F.C. Krebs, Solar Energy Materials and Solar Cells 93 (2009) 465. https://doi.org/10.1016/j.solmat.2008.12.012
  23. R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom, B. de Boer, Polymer Reviews 48 (2008) 531. https://doi.org/10.1080/15583720802231833
  24. E. Bundgaard, F.C. Krebs, Solar Energy Materials and Solar Cells 91 (2007) 954. https://doi.org/10.1016/j.solmat.2007.01.015
  25. N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao, M. Leclerc, Journal of the American Chemical Society 130 (2008) 732. https://doi.org/10.1021/ja0771989
  26. E. Zhou, J. Cong, K. Tajima, C. Yang, K. Hashimoto, Journal of Physical Chemistry C 116 (2012) 2608. https://doi.org/10.1021/jp209253m
  27. T.-Y. Chu, J. Lu, S. Beaupre, Y. Zhang, J.-R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, Y. Tao, Journal of the American Chemical Society 133 (2011) 4250. https://doi.org/10.1021/ja200314m
  28. C.M. Amb, S. Chen, K.R. Graham, J. Subbiah, C.E. Small, F. So, J.R. Reynolds, Journal of the American Chemical Society 133 (2011) 10062. https://doi.org/10.1021/ja204056m
  29. J.-Y. Lee, M.-H. Choi, H.-J. Song, D.-K. Moon, Journal of Polymer Science Part A: Polymer Chemistry 48 (2010) 3942. https://doi.org/10.1002/pola.24174
  30. Y. Zhang, J. Zou, H.-L. Yip, K.-S. Chen, D.F. Zeigler, Y. Sun, A.K.-Y. Jen, Chemistry of Materials 23 (2011) 2289. https://doi.org/10.1021/cm200316s
  31. A. Najari, S. Beaupre, P. Berrouard, Y. Zou, J.-R. Pouliot, C. Lepage-Perusse, M. Leclerc, Advanced Functional Materials 21 (2011) 718. https://doi.org/10.1002/adfm.201001771
  32. J. Li, A.C. Grimsdale, Chemical Society Reviews 39 (2010) 2399. https://doi.org/10.1039/b915995a
  33. G.-Y. Chen, Y.-H. Cheng, Y.-J. Chou, M.-S. Su, C.-M. Chen, K.-H. Wei, Chemical Communications 47 (2011) 5064. https://doi.org/10.1039/c1cc10585j
  34. A. Najari, P. Berrouard, C. Ottone, M. Boivin, Y. Zou, D. Gendron, W.-O. Caron, P. Legros, C.N. Allen, S. Sadki, M. Leclerc, Macromolecules 45 (2012) 1833. https://doi.org/10.1021/ma202540j
  35. Z. Lin, J. Bjorgaard, A.G. Yavuz, A. Iyer, M.E. Kose, RSC Advances 2 (2012) 642. https://doi.org/10.1039/c1ra00570g
  36. H. Zhou, L. Yang, S. Stoneking, W. You, Applied Materials and Interfaces 2 (2010) 1377. https://doi.org/10.1021/am1000344
  37. J.Y. Lee, K.W. Song, J.R. Ku, T.H. Sung, D.K. Moon, Solar Energy Materials and Solar Cells 95 (2011) 3377. https://doi.org/10.1016/j.solmat.2011.07.033
  38. N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao, M. Leclerc, Journal of the American Chemical Society 130 (2008) 732. https://doi.org/10.1021/ja0771989
  39. S. Beaupree, M. Belletete, G. Durocher, M. Leclerc, Macromolecular Theory and Simulations 20 (2011) 13. https://doi.org/10.1002/mats.201000061
  40. J.Y. Lee, S.M. Lee, K.W. Song, D.K. Moon, European Polymer Journal 48 (2012) 532. https://doi.org/10.1016/j.eurpolymj.2011.12.006
  41. Y. Yao, C. Shi, G. Li, V. Shrotriya, Q. Pei, Y. Yang, Applied Physics Letters 89 (2006), 153507-53507-3. https://doi.org/10.1063/1.2361082

Cited by

  1. Effect of the Length of Side Group Substitution on Optical and Electroluminescene Properties vol.35, pp.10, 2014, https://doi.org/10.5012/bkcs.2014.35.10.3041
  2. Thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers for organic solar cells vol.56, pp.72, 2014, https://doi.org/10.1039/d0cc04150e