DOI QR코드

DOI QR Code

Effect of Milling on Properties and Consolidation of AlN by High-Frequency Induction Heated Sintering

  • Shon, In-Jin (Division of Advanced Materials Engineering and Center for Advanced Bioimaging Research, Engineering College, Chonbuk National University) ;
  • Kwon, Hanjung (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Oh, Hyun-Su (Division of Advanced Materials Engineering and Center for Advanced Bioimaging Research, Engineering College, Chonbuk National University)
  • Received : 2013.06.20
  • Accepted : 2013.07.23
  • Published : 2014.03.20

Abstract

Commercial AlN powders were high-energy ball milled for various durations, and consolidated without a binder, using the high-frequency induction heated sintering method (HFIHS). The effect of milling on the sintering behavior, crystallite size and mechanical properties of AlN compacts were evaluated. A dense AlN compact with a relative density of up to 96% could be readily obtained within 1 min. The ball milling effectively refined the crystallite structure of AlN powders, and facilitated the subsequent densification. The sinter-onset temperature was reduced appreciably, by the prior milling for 10 h from $750^{\circ}C$ to $600^{\circ}C$. Accordingly, the relative density of AlN compact increased, as the milling time increased. It is clearly demonstrated that a quick densification of AlN bulk materials to near the theoretical density could be obtained by the combination of HFIHS and the preparatory high-energy ball milling process.

Keywords

References

  1. M. Laurel, Ceramic Bulletin. 69, 1801 (1990).
  2. X. Jiang, Y. Chen, X. W. Sun, and L. P. Huang, J. Eur. Ceram. Soc. 19, 2033 (1999). https://doi.org/10.1016/S0955-2219(98)00197-6
  3. D. J. Kim, S. H. Hahn, S. H. Oh, and E. J. Kim, Mater. Lett. 57, 355 (2002). https://doi.org/10.1016/S0167-577X(02)00790-5
  4. D. Qin, W. Chang, J. Zhou, and Y. Chen, Thermochim. Acta. 236, 205 (1994). https://doi.org/10.1016/0040-6031(94)80269-6
  5. H. Gleiter, Nanostruct. Mater. 6, 3 (1995). https://doi.org/10.1016/0965-9773(95)00025-9
  6. J. R. Yoon, D. J. Choi, K. H. Lee, J. Y. Lee, and Y. H. Kim, Electron. Mater. Lett. 4, 167 (2008).
  7. J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987). https://doi.org/10.1038/330556a0
  8. A. M. George, J. Iniguez, and L. Bellaiche, Nature 413, 54 (2001). https://doi.org/10.1038/35092530
  9. T. Prakash, Electron. Mater. Lett. 8, 231 (2012).
  10. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sensors and Actuators B: Chemical. 3, 147 (1991). https://doi.org/10.1016/0925-4005(91)80207-Z
  11. E. S. Ahn, N. J. Gleason, A. Nakahira, and J. Y. Ying, Nano Letters 1, 149 (2001). https://doi.org/10.1021/nl0055299
  12. C. F. Chen, M. E. Perisse, and A. F. Ramire, J. Mater. Sci. 29, 1595 (1994). https://doi.org/10.1007/BF00368932
  13. G. Pezzotti, A. Nakahira, and M. Tajika, J. Eur. Ceram. Soc. 20, 1319 (2000). https://doi.org/10.1016/S0955-2219(99)00286-1
  14. K. Watari, K. Ishizaki, and T. Fujikawa, J. Mater. Sci. 27, 2627 (1992). https://doi.org/10.1007/BF00540680
  15. A. Hafidi, M. Billy and J. P. Lecompte, J. Mater. Sci. 27, 3405 (1992). https://doi.org/10.1007/BF01116044
  16. A. Morell and A. Mermosin, Bull. Am. Ceram. Soc. 59, 626 (1980).
  17. D. J. Chen and M. J. Mayo, J. Am. Ceram. Soc. 79, 906 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08524.x
  18. D. J. Chen and M. J. Mayo, NanoStruct. Mater. 2, 469 (1993). https://doi.org/10.1016/0965-9773(93)90164-7
  19. N. R. Park, I. Y. Ko, J. K. Yoon, J. M. Doh, and I. J. Shon, Met. Mater. Inter. 17, 233 (2011). https://doi.org/10.1007/s12540-011-0408-5
  20. S. L. Du, S. H. Cho, I. Y. Ko, J. M. Doh, J. K. Yoon, S. W. Park, and I. J. Shon, Korean J. Met. Mater. 49, 231 (2011). https://doi.org/10.3365/KJMM.2011.49.3.231
  21. I.-J. Shon, G.-W. Lee, J.-M. Doh, and J.-K. Yoon, Electron. Mater. Lett. 9, 219 (2013). https://doi.org/10.1007/s13391-012-2142-7
  22. C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, p. 207, Plenum Press, New York, (1998).
  23. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  24. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  25. J. R. Friedman, J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  26. J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Acta. Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  27. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).

Cited by

  1. Synthesis of MgO-CaO-Al2O3-SiO2 nanocomposite powder by polymeric complex method as a novel sintering additive of AlN ceramics vol.12, pp.6, 2014, https://doi.org/10.1007/s13391-016-6087-0
  2. Mechanical Synthesis and Rapid Consolidation of Nanostructured W-Al2O3 Composite vol.28, pp.6, 2014, https://doi.org/10.3740/mrsk.2018.28.6.343
  3. Dry ball milling and wet ball milling for fabricating copper-yttria composites vol.37, pp.10, 2014, https://doi.org/10.1007/s12598-018-1086-y
  4. Effect of BN Addition on the Mechanical Properties of AlN vol.57, pp.5, 2014, https://doi.org/10.3365/kjmm.2019.57.5.310