DOI QR코드

DOI QR Code

Effect of Milling on Properties and Consolidation of $TiO_2$ by High-Frequency Induction Heated Sintering

  • Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Lee, Geon-Woo (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Doh, Jung-Mann (Interface Control Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Jin-Kook (Interface Control Research Center, Korea Institute of Science and Technology)
  • Published : 2013.03.20

Abstract

Commercial $TiO_2$ powders were high-energy ball milled for various durations and consolidated using high-frequency induction heated sintering (HFIHS). The effect of milling on the sintering behavior, crystallite size and mechanical properties of $TiO_2$ powders were evaluated. A nanostructured dense $TiO_2$ compact with a relative density of up to 98% was readily obtained within 1 min. The ball milling effectively refined the crystallite structure of $TiO_2$ powders and facilitated the subsequent densification. The sinter-onset temperature was noticeably reduced by the prior milling for 10 h. Accordingly, the relative density of $TiO_2$ compact increased as the milling time increases. Furthermore, the microhardness and fracture toughness of sintered $TiO_2$ increased as the density increases. It is clearly demonstrated that a quick densification of nano-structured $TiO_2$ bulk materials to near theoretical density could be obtained by the combination of HFIHS and the preparatory high-energy ball milling processes.

Keywords

References

  1. K. Iketani, R. D. Sun, M. Toki, K. Hirota, and O. Yamaguchi, J. Phys. Chem. Solids 64, 507 (2003). https://doi.org/10.1016/S0022-3697(02)00357-8
  2. C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, J. Am. Ceram. Soc. 80, 3157 (1997).
  3. C. Garzella, E. Comini, E. Bontempi, L. E. Depero, C. Frigeri, and G. Sberveglieri, Sens. Actuators B 83, 230 (2002). https://doi.org/10.1016/S0925-4005(01)01046-2
  4. D. J. Kim, S. H. Hahn, S. H. Oh, and E. J. Kim, Mater. Lett. 57, 355 (2002). https://doi.org/10.1016/S0167-577X(02)00790-5
  5. D. Qin, W. Chang, J. Zhou, and Y. Chen, Thermochim. Acta 236, 205 (1994). https://doi.org/10.1016/0040-6031(94)80269-6
  6. H. Gleiter, Nanostructured Materials 6, 3 (1995). https://doi.org/10.1016/0965-9773(95)00025-9
  7. J. R. Yoon, D. J. Choi, K. H. Lee, J. Y. Lee, and Y. H. Kim, Electron. Mater. Lett. 4, 167 (2008).
  8. J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987). https://doi.org/10.1038/330556a0
  9. A. M. George, J. Iniguez, and L. Bellaiche, Nature 413, 54 (2001). https://doi.org/10.1038/35092530
  10. T. Prakash, Electron. Mater. Lett. 8, 231 (2012).
  11. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sensors and Actuators B: Chemical. 3, 147 (1991). https://doi.org/10.1016/0925-4005(91)80207-Z
  12. D. G. Lamas, A. Caneiro, D. Niebieskikwiat, R. D. Sanchez, D. Garcia, and B. Alascio, Journal of Magnetism and Magnetic Materials. 241, 207 (2002). https://doi.org/10.1016/S0304-8853(02)00006-9
  13. C. W. Nahm, C. J. Kim, Y. J. Park, B. J. Lee, and B. W. Park, Electron. Mater. Lett. 4, 5 (2008).
  14. E. S. Ahn, N. J. Gleason, A. Nakahira, and J. Y. Ying, Nano Lett. 1, 149 (2001). https://doi.org/10.1021/nl0055299
  15. A. Morell and A. Mermosin, Bull. Am. Ceram. Soc. 59, 626 (1980).
  16. D. J. Chen and M. J. Mayo, J. Am. Ceram. Soc. 79, 906 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08524.x
  17. D. J. Chen and M. J. Mayo, NanoStruct. Mater. 2, 469 (1993). https://doi.org/10.1016/0965-9773(93)90164-7
  18. I. J. Shon, S. L. Du, I. Y. Ko, J. M. Doh, J. K. Yoon, and J. H. Park, Electron. Mater. Lett. 7, 133 (2011). https://doi.org/10.1007/s13391-011-0608-7
  19. H.-S. Kang, I.-Y. Ko, J.-K. Yoon, J.-M. Doh, K.-T. Hong, and I.-J. Shon, Met. Mater. Int. 17, 57 (2011) . https://doi.org/10.1007/s12540-011-0208-y
  20. I.-J. Shon, H.-Y. Song, S.-W. Cho, W. B. Kim, and C.-Y. Suh, Korean J. Met. Mater. 50, 39 (2012). https://doi.org/10.3365/KJMM.2012.50.1.039
  21. N. R. Park, I. Y. Ko, J. K. Yoon, J. M. Doh, and I. J. Shon, Met. Mater. Int. 17, 233 (2011). https://doi.org/10.1007/s12540-011-0408-5
  22. S. L. Du, S. H. Cho, I. Y. Ko, J. M. Doh, J. K. Yoon, S. W. Park, and I. J. Shon, Korean J. Met. Mater. 49, 231 (2011). https://doi.org/10.3365/KJMM.2011.49.3.231
  23. C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, p. 207, Plenum Press, New York (1998).
  24. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  25. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  26. J. R. Friedman, J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  27. J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Acta. Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  28. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).

Cited by

  1. Mechanochemical Synthesis and Rapid Consolidation of Nanostructured (Ti,Al,V)C by Pulsed Current Activated Heating and Its Mechanical Properties vol.54, pp.11, 2013, https://doi.org/10.2320/matertrans.m2013252
  2. Rapid Synthesis and Consolidation of a Nanostructured Mg0.6Al0.8Ti1.6O5 Compound by Pulsed Current Activated Heating vol.54, pp.11, 2013, https://doi.org/10.2320/matertrans.m2013255
  3. Pulsed Current Activated Synthesis and Consolidation of Nanostructured MoSi2–NbSi2 Composite and Its Mechanical Properties vol.55, pp.2, 2013, https://doi.org/10.2320/matertrans.m2013341
  4. 고주파 유도 가열에 의한 나노구조 Mg4Al2Ti9O25 합성 및 소결과 기계적 성질 vol.24, pp.2, 2013, https://doi.org/10.3740/mrsk.2014.24.2.67
  5. Simultaneous Synthesis and Consolidation of Nanostructured MoSi2-NbSi2 Composite by High-Frequency Induction Heated Sintering and Its Mechanical Properties vol.24, pp.4, 2013, https://doi.org/10.3740/mrsk.2014.24.4.180
  6. 급속 소결에 의한 인공관절용 나노구조 2/3 Cr-ZrO2 복합재료 제조 및 특성 vol.24, pp.9, 2014, https://doi.org/10.3740/mrsk.2014.24.9.495
  7. Mechanochemical Synthesis and Fast Low-Temperature Consolidation of Nanostructured Ni-ZrO2 Composite and Its Mechanical Properties vol.56, pp.1, 2013, https://doi.org/10.2320/matertrans.m2014265
  8. Enhanced properties of nanostructured TiO2-graphene composites by rapid sintering vol.24, pp.1, 2013, https://doi.org/10.1007/s12540-017-7135-5
  9. Synthesis of thick photocatalytic titania surface layers by solution plasma spraying and subsequent treatment by pulsed laminar plasma jet vol.333, pp.None, 2013, https://doi.org/10.1016/j.surfcoat.2017.10.064