DOI QR코드

DOI QR Code

Temperature Effect on Twin Formation Kinetics and Deformation Behavior of Fe-18Mn-0.6C TWIP Steel

  • Jung, Joong Eun (POSTECH, Department of Materials Science and Engineering) ;
  • Park, Junho (POSCO Technical Research Laboratories, Steelmaking Research Group) ;
  • Kim, Jung-Su (POSTECH, Department of Materials Science and Engineering) ;
  • Jeon, Jong Bae (Max-Planck-Institut fr Eisenforschung, Department of Structure and Nano-/Micromechanics of Materials) ;
  • Kim, Sung Kyu (POSCO Technical Research Laboratories, TWIP Project Team) ;
  • Chang, Young Won (POSTECH, Department of Materials Science and Engineering)
  • Received : 2013.05.21
  • Accepted : 2013.06.15
  • Published : 2014.01.20

Abstract

Temperature effect on deformation behavior has been investigated in relation to formation kinetics of twins in a Fe-18Mn-0.6C TWIP steel. Total elongation was found to reach a maximum value of 88% at $200^{\circ}C$ and then decreased continuously with the increase in test temperature from $300^{\circ}C$ up to $600^{\circ}C$. This reversed temperature dependence on ductility could be attributed to the formation kinetics of deformation twins, as was prescribed by an internal variable theory of inelastic deformation. It was found that twins became more difficult to form at higher temperatures due to insufficient internal strain energy accumulated to reduce ductility progressively in this temperature range. Dislocation glide mechanism became, however, dominant at higher temperatures above $600^{\circ}C$ to increase total elongation following the usual temperature dependence. Finally the stacking fault energy was related with the stability parameter, $\beta$, used in the transformation kinetics relation.

Keywords

References

  1. R. A. Hadfield, Metallurgy and Its Influence on Modern Progress, p.91, Chapman and Hall Ltd., London (1925).
  2. Y. G. Kim, T. W. Kim, and S. B. Hong, Proc. of ISATA Conference, p.269, Aachen, Germany (1993).
  3. D. Cornette, P. Cugy, A. Hildenbrand, M. Bouzekri, and G. Lovato, Rev. Metall. 12, 905 (2005).
  4. S. K. Kim, J. Choi, S. C. Kang, I. R. Shon, and K. G. Chin, POSCO Tech. Report 9, 108 (2006).
  5. J. K. Jung, O. Y. Lee, Y. K. Park, D. E. Kim, K. G. Jin, S. K. Kim, and K. H. Song, J. Kor. Inst. Met. & Mater. 46, 627 (2008).
  6. C. Y. Kang and T. Y. Hur, Korean J. Met. Mater. 50, 413 (2012). https://doi.org/10.3365/KJMM.2012.50.6.413
  7. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Metall. Mater. Trans. A 40, 3076 (2009). https://doi.org/10.1007/s11661-009-0050-8
  8. K. T. Park, K. G. Jin, S. H. Han, S. W. Hwang, K. Y Choi, and C. S. Lee, Mater. Sci. Eng. A 527, 3651 (2010). https://doi.org/10.1016/j.msea.2010.02.058
  9. M. Koyama, T. Sawaguchi, T. K. Lee, C. S. Lee, and K. Tsuzaki, Mater. Sci. Eng. A 528, 7310 (2011). https://doi.org/10.1016/j.msea.2011.06.011
  10. L. Remy and A. Pineau, Mater. Sci. Eng. A 36, 47 (1978). https://doi.org/10.1016/0025-5416(78)90194-5
  11. S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387-389, 158 (2004). https://doi.org/10.1016/j.msea.2004.01.059
  12. A. Soulami, K. S. Choi, Y. F. Shen, W. N. Liu, X. Sun, and M. A. Khaleel, Mater. Sci. Eng. A 528, 402 (2011).
  13. J. Kim, Y. Estrin, H. Beladi, I. Timokhina, K. G. Chin, S. K. Kim, and B. C. De Cooman, Metall. Mater. Trans. A 43, 479 (2012). https://doi.org/10.1007/s11661-011-0898-2
  14. T. Angel, J. Iron and Steel Inst. 177, 165 (1954).
  15. D. C. Ludwigson and J. A. Berger, J. Iron and Steel Inst. 207, 63 (1969).
  16. G. B. Olson and M. Azrin, Met. Trans. A 9, 713 (1978). https://doi.org/10.1007/BF02659928
  17. L. Remy and A. Pineau, Mater. Sci. Eng. A 26, 123 (1976). https://doi.org/10.1016/0025-5416(76)90234-2
  18. Y. S. Jung, Y. K. Lee, D. K. Matlock, and M. C. Mataya, Met. Mater. Int. 17, 553 (2011). https://doi.org/10.1007/s12540-011-0804-x
  19. K. H. Kwon, J. S. Jeong, J. K. Choi, Y. M. Koo, Y. Tomota, and N. J. Kim, Met. Mater. Int. 18, 751 (2012). https://doi.org/10.1007/s12540-012-5003-x
  20. V. F. Zackay, E. R. Parker, D. Fahr, and R. Busch, Trans. Am. Soc. Met. 60, 252 (1967).
  21. O. Matsumura, Y. Sakuma, and H. Takechi, Scripta Mater. 21, 1301 (1987). https://doi.org/10.1016/0036-9748(87)90103-7
  22. H. C. Chen, H. Era, and M. Shimizu, Met. Trans. A 20, 437 (1987).
  23. Y. Sakuma, D. K. Matlock, and G. Krauss, J. Heat Treat. 8, 109 (1990). https://doi.org/10.1007/BF02831631
  24. Y. Sakuma, O. Matsumura, and H. Takechi, Met. Trans. A 22, 489 (1991). https://doi.org/10.1007/BF02656816
  25. T. K. Ha and Y. W. Chang, Acta Mater. 46, 2741 (1998). https://doi.org/10.1016/S1359-6454(97)00473-4
  26. J. H. Chung and Y.W. Chang, Tetsu-to-Hagane 79, 665 (1993). https://doi.org/10.2355/tetsutohagane1955.79.6_665
  27. H. C. Shin, T. K. Ha, and Y. W. Chang, Scripta Mater. 45, 823 (2001). https://doi.org/10.1016/S1359-6462(01)01101-0
  28. J. H. Chung, J. B. Jeon, and Y. W. Chang, Met. Mater. Int. 16, 533 (2010). https://doi.org/10.1007/s12540-010-0803-3
  29. M. G. Lee and S. J. Kim, Met. Mater. Int. 18, 425 (2012). https://doi.org/10.1007/s12540-012-3007-1
  30. H. C. Choi, T. K. Ha, H. C. Shin, and Y. W. Chang, Scripta Mater. 40, 1171 (1999). https://doi.org/10.1016/S1359-6462(99)00017-2
  31. J. S. Kim, J. B. Jeon, J. E. Jung, K. K. Um, and Y. W. Chang, Met. Mater. Int. (doi: 10.1007/s12540-014-1010-4) (2013).
  32. J. B. Seol, J. E. Jung, Y. W. Chang, and C. G. Park, Acta Mater. 61 558 (2013). https://doi.org/10.1016/j.actamat.2012.09.078
  33. L. Remy, Acta Metall. 26, 443 (1978). https://doi.org/10.1016/0001-6160(78)90170-0
  34. S. A. Saltykov, Proc. 2nd Int. Cong. for Stereology, p.63, Springer-Verlag, New York (1967).
  35. T. H. Lee, E. J. Shin, C. S. Oh, H. Y. Ha, and S. J. Kim, Acta Mater. 58, 3173 (2010). https://doi.org/10.1016/j.actamat.2010.01.056
  36. S. Krishnamurthy, K-W Qian, R. E. Reed-Hill, Practical Applications of Quantitative Metallography, p.41, ASTMSTP 839, Philadelphia (1984).
  37. T. C. Tisone, Acta Metall. 21, 229 (1973). https://doi.org/10.1016/0001-6160(73)90008-4
  38. J. A. Venables, Deformation Twinning, p.77, Gordon and Breach, New York (1964).

Cited by

  1. Effect of Carbon on Nitrogen Solubility and AlN Formation in High Al Alloyed Liquid Steels vol.54, pp.7, 2014, https://doi.org/10.2355/isijinternational.54.1578
  2. Research on Fluctuations in Work Hardening Rate of a Fe-Mn-Al-C Steel vol.817, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/msf.817.288
  3. Current opinion in medium manganese steel vol.31, pp.7, 2014, https://doi.org/10.1179/1743284714y.0000000722
  4. Critical Assessment 15: Science of deformation and failure mechanisms in twinning induced plasticity steels vol.31, pp.11, 2014, https://doi.org/10.1179/1743284715y.0000000095
  5. Effect of Austenite Stability on Microstructural Evolution and Tensile Properties in Intercritically Annealed Medium-Mn Lightweight Steels vol.47, pp.6, 2016, https://doi.org/10.1007/s11661-016-3433-7
  6. 변형률 속도에 따른 Fe-24.5Mn-4Cr-0.45C 합금의 인장 특성과 동적 변형시효 vol.26, pp.5, 2014, https://doi.org/10.3740/mrsk.2016.26.5.281
  7. 오스테나이트계 고망간강의 인장 특성에 미치는 결정립 크기의 영향 vol.26, pp.6, 2014, https://doi.org/10.3740/mrsk.2016.26.6.325
  8. 고압 수소 가스 하 인장 시험을 이용한 두 오스테나이트계 고망간강의 수소취화 특성 평가 vol.26, pp.7, 2016, https://doi.org/10.3740/mrsk.2016.26.7.353
  9. Study on the Strain Hardening Behaviors of TWIP/TRIP Steels vol.48, pp.10, 2014, https://doi.org/10.1007/s11661-017-4245-0
  10. Resistance spot weldability of lightweight steel with a high Al content vol.23, pp.2, 2014, https://doi.org/10.1007/s12540-017-6349-x
  11. Resistance spot weldability of lightweight steel with a high Al content vol.23, pp.2, 2014, https://doi.org/10.1007/s12540-017-6349-x
  12. On the rule-of-mixtures of the hardening parameters in TWIP-cored three-layer steel sheet vol.23, pp.3, 2017, https://doi.org/10.1007/s12540-017-6674-0
  13. 페라이트-펄라이트 조직 저탄소강의 미세조직과 인장 특성의 상관관계에 미치는 미량합금원소와 변태 온도의 영향 vol.27, pp.4, 2014, https://doi.org/10.3740/mrsk.2017.27.4.184
  14. Temperature-Dependence of the Mechanical Responses for Two Types of Twinning-Induced Plasticity Steels vol.49, pp.5, 2018, https://doi.org/10.1007/s11661-018-4562-y
  15. Mn 및 V 함량이 다른 페라이트-펄라이트 조직강의 강도와 변형능에 미치는 미세조직 인자의 영향 vol.28, pp.10, 2014, https://doi.org/10.3740/mrsk.2018.28.10.570
  16. 극저온용 오스테나이트계 Fe-30Mn-0.2C(-1.5Al) 고망간강의 수소 취화 특성 vol.31, pp.6, 2014, https://doi.org/10.12656/jksht.2018.31.6.283
  17. Deformation behaviour of low carbon high Mn twinning-induced plasticity steel vol.233, pp.3, 2014, https://doi.org/10.1177/0954406217730440
  18. 극저온용 오스테나이트계 고망간강의 인장 및 충격 특성에 미치는 C, Mn, Al 첨가의 영향 vol.29, pp.3, 2014, https://doi.org/10.3740/mrsk.2019.29.3.189
  19. Dynamic Strain Aging and Serration Behavior of Three High-Manganese Austenitic Steels vol.50, pp.4, 2014, https://doi.org/10.1007/s11661-019-05134-y
  20. Evolution of deformation twins with strain rate in a medium-manganese wear-resistant steel Fe-8Mn-1C-1.2Cr-0.2V vol.26, pp.9, 2014, https://doi.org/10.1007/s42243-018-00225-3
  21. Deformation Behaviors of Flat Rolled Wire in Twinning-Induced Plasticity Steel vol.26, pp.5, 2014, https://doi.org/10.1007/s12540-019-00363-7
  22. Multistage serrated flow behavior of a medium-manganese high-carbon steel vol.27, pp.9, 2020, https://doi.org/10.1007/s42243-019-00343-6