DOI QR코드

DOI QR Code

Deformation Behavior of Ferrite-Austenite Duplex High Nitrogen Steel

  • Kim, Byoungkoo (POSTECH, Graduate Institute of Ferrous Technology) ;
  • Trang, T.T.T. (POSTECH, Graduate Institute of Ferrous Technology) ;
  • Kim, Nack J. (POSTECH, Graduate Institute of Ferrous Technology)
  • Received : 2013.06.10
  • Accepted : 2013.06.12
  • Published : 2014.01.20

Abstract

The tensile deformation behavior of ferrite-austenite duplex high nitrogen steel has been investigated by interrupted tensile tests and compared with that of fully austenitic high nitrogen steel. It shows that ferrite is softer than austenite and most of the strain in early and later stages of deformation is accommodated by ferrite, while austenite undergoes a deformation-induced martensitic transformation. Such accommodation of a large amount of strain in ferrite is responsible for rapidly increasing work hardening rate and the resultant higher ultimate tensile strength of duplex high nitrogen steel as compared to those of fully austenitic high nitrogen steel, although duplex steel contains a smaller amount of N than austenitic steel.

Keywords

References

  1. F. K. Yan, G. Z. Liu, N. R. Tao, and K. Lu, Acta Mater. 60, 1059 (2012). https://doi.org/10.1016/j.actamat.2011.11.009
  2. T. S. Byun, N. Hashimoto, and K. Farrell, Acta Mater. 52, 3889 (2004). https://doi.org/10.1016/j.actamat.2004.05.003
  3. O. Bouaziz , S. Allain, C. P. Scott, P. Cugy, and D. Barbier, Current Opinion in Solid State and Materials Science 15, 141 (2011). https://doi.org/10.1016/j.cossms.2011.04.002
  4. T.-H. Lee, C.-S. Oh, S.-J. Kim, and S. Takaki, Acta Mater. 55, 3649 (2007). https://doi.org/10.1016/j.actamat.2007.02.023
  5. T.-H. Lee, C.-S. Oh, and S.-J. Kim, Scripta Mater. 58, 110 (2008). https://doi.org/10.1016/j.scriptamat.2007.09.029
  6. J. W. Simmons, Mater. Sci. Eng. A 207, 159 (1996). https://doi.org/10.1016/0921-5093(95)09991-3
  7. V. G. Gavriljuk and H. Berns, High Nitrogen Steels, pp.281- 284, Springer-Verlag, Berlin (1999).
  8. U. Kamachi Mudali and Baldev Raj, High Nitrogen Steels and Stainless Steels, p.252, Narosa Publication House, New Delhi (2004).
  9. M. O. Speidel, Met. Sci. and Heat Treatment 47, 489 (2005). https://doi.org/10.1007/s11041-006-0017-y
  10. P. Millner, C. Solenthaler, P. J. Uggowitzer, and M. O. Speidel, Acta Metall. Mater. 42, 2211 (1994). https://doi.org/10.1016/0956-7151(94)90300-X
  11. J. Y. Choi, J. H. Ji, S. W. Hwang, and K. T. Park, Mater. Sci. Eng. A 534, 673 (2012). https://doi.org/10.1016/j.msea.2011.12.025
  12. J. Y. Choi, J. H. Ji, S. W. Hwang, and K. T. Park, Mater. Sci. Eng. A 535, 32 (2012). https://doi.org/10.1016/j.msea.2011.12.037
  13. C.-H. Seo, K. H. Kwon, K. Choi, K.-H. Kim, J. H. Kwak, S. Lee, and N. J. Kim, Scripta Mater. 66, 519 (2012). https://doi.org/10.1016/j.scriptamat.2011.12.026
  14. K. H. Kwon, J. S. Jeong, J.-K. Choi, Y. M. Koo, Y. Tomota, and N. J. Kim, Met. Mater. Int. 18, 751 (2012). https://doi.org/10.1007/s12540-012-5003-x
  15. K. H. Kwon, B.-C. Suh, S.-I. Baik, Y.-W. Kim, J.-K. Choi, and N. J. Kim, Sci. Technol. Adv. Mater. 14, 014204 (2013). https://doi.org/10.1088/1468-6996/14/1/014204
  16. N. J. Kim and G. Thomas, Metall. Trans. A 12, 483 (1981). https://doi.org/10.1007/BF02648546
  17. S. Harjo, Y. Tomota, P. Lukas, D. Neov, M. Vrana, P. Mikula, and M. Ono, Acta Mater. 49, 2471 (2001). https://doi.org/10.1016/S1359-6454(01)00147-1
  18. N. Jia, R. Lin Peng, D. W. Brown, B. Clausen, and Y. D. Wang, Metall. Mater. Trans. A 39, 3134 (2008). https://doi.org/10.1007/s11661-008-9675-2
  19. L. Fu, Z. Li, H. Wang, W. Wang, and A. Shan, Scripta Mater. 67, 297 (2012). https://doi.org/10.1016/j.scriptamat.2012.05.010
  20. K. Choi, C.-H. Seo, H. Lee, S. K. Kim, J. H. Kwak, K. G. Chin, K.-T. Park, and N. J. Kim, Scripta Mater. 63, 1028 (2010). https://doi.org/10.1016/j.scriptamat.2010.07.036
  21. J.-Y. Park and Y.-S. Ahn, Korean J. Met. Mater. 50, 793 (2012).

Cited by

  1. Effect of Austenite Stability on Microstructural Evolution and Tensile Properties in Intercritically Annealed Medium-Mn Lightweight Steels vol.47, pp.6, 2016, https://doi.org/10.1007/s11661-016-3433-7
  2. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale vol.6, pp.None, 2014, https://doi.org/10.1038/srep34958
  3. 고압 수소 가스 하 인장 시험을 이용한 두 오스테나이트계 고망간강의 수소취화 특성 평가 vol.26, pp.7, 2016, https://doi.org/10.3740/mrsk.2016.26.7.353
  4. Effect of Heavy Ion Irradiation Dosage on the Hardness of SA508-IV Reactor Pressure Vessel Steel vol.7, pp.1, 2014, https://doi.org/10.3390/met7010025
  5. 고온-고압 수소 주입된 Fe-30Mn-0.2C-(1.5Al) 고망간강의 인장 거동에 미치는 표면 조건의 영향 vol.27, pp.6, 2014, https://doi.org/10.3740/mrsk.2017.27.6.318
  6. 극저온용 오스테나이트계 Fe-30Mn-0.2C(-1.5Al) 고망간강의 수소 취화 특성 vol.31, pp.6, 2014, https://doi.org/10.12656/jksht.2018.31.6.283
  7. Hot deformation behavior of high nitrogen martensitic stainless steels vol.6, pp.1, 2019, https://doi.org/10.1088/2053-1591/aae5e8