DOI QR코드

DOI QR Code

Production of Chemical Intermediate Furfural from Renewable Biomass Miscanthus Straw

재생가능한 바이오매스 자원인 억새로부터 화학중간체 푸르프랄의 생산

  • Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University)
  • 정귀택 (부경대학교 생물공학과)
  • Received : 2014.02.16
  • Accepted : 2014.03.22
  • Published : 2014.08.01

Abstract

In this work, the possibility of Miscanthus as renewable lignocellulosic biomass was evaluated for production of furfural. Also, to find the reaction conditions of furfural production from Miscanthus straw, the effects of solid-to-liquid ratio, reaction temperature, catalyst amount, and reaction time were investigated. Finally, 5.1 g/L furfural was produced from Miscanthus straw in the condition of solid-to-liquid ratio at 1:10, reaction temperature at $150^{\circ}C$, sulfuric acid at 3%, and reaction time of 60 minutes. This result will provide basic knowledge for converting renewable resources into valuable chemicals substituted for fossil fuels.

본 연구는 재생가능한 목질계 바이오매스 자원인 억새를 이용한 푸르프랄의 생산가능성을 평가하였다. 또한, 억새줄기로부터 푸르프랄의 생산을 위한 반응조건을 찾기 위하여 고/액 비, 반응온도, 촉매량, 그리고 반응시간의 영향을 조사하였다. 최종적으로 억새로부터 1:10의 고/액 비, 반응온도 $150^{\circ}C$, 3% 황산, 그리고 반응시간 60분의 반응조건에서 5.1 g/L의 푸르프랄을 생산하였다. 이러한 결과는 재생가능한 자원으로부터 석유를 대체할 수 있는 귀중한 화학물질로 전환할 수 있는 기초 정보를 제공하는 것이다.

Keywords

References

  1. Hayes, D. J., Fitzpatrick, S., Hayes, M. H. B. and Ross, J. R. H., "The Biofine Process - Production of Levulinic Acid, Furfural, and Formic Acid from Lignocellulosic Feedstocks," pp. 139-164. In: B. Kamm, P. R. Gruber, M. Kamm (eds.). Biorefineries - Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim(2006).
  2. Faaij, A. P. C., "Developments in International Bioenergy Markets and Trade," Biomass Bioenergy, 32, 657-659(2008). https://doi.org/10.1016/j.biombioe.2008.02.008
  3. Demibras, A., "Progress and Recent Trends in Biofuels," Prog. Energy Combust. Sci., 33, 1-18(2007). https://doi.org/10.1016/j.pecs.2006.06.001
  4. Jeong, G. T. and Park, D. H. "Production of Sugars and Levulinic Acid from Marine Biomass Gelidium amansii," Appl. Biochem. Biotechnol., 161, 41-52(2010). https://doi.org/10.1007/s12010-009-8795-5
  5. Jeong, G. T. and Park, D. H., "Production of Levulinic Acid from Marine Algae Codium fragile Using Acid-hydrolysis and Response Surface Methodology," Korean Society for Biotechnology and Bioengineering Journal, 26, 341-346(2011). https://doi.org/10.7841/ksbbj.2011.26.4.341
  6. Cha, J. Y. and Hanna, M. A., "Levulinic Acid Production Based on Extrusion and Pressurized Batch Reaction," Industrial Crops and Products, 16, 109-118(2002). https://doi.org/10.1016/S0926-6690(02)00033-X
  7. The Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL), Top value added chemicals from biomass, volume I - Results of screening for potential candidates from sugars and synthesis gas. http://www.osti.gov/bridge (2004).
  8. Lee, S. J., Go, S., Jeong, G. T. and Kim, S. K., "Oil Production From Five Marine Microalgae for the Production of Biodiesel," Biotechnology and Bioprocess Engineering, 16, 561-566(2011). https://doi.org/10.1007/s12257-010-0360-0
  9. Han, J. G., Oh, S. H., Choi, W. Y., Woong, K. J., Seo, H. B., Jeong, K. H., Kang, D. H. and Lee, H. Y., "Enhancement of Saccharification Yield of Ulva pertusa kjellman for Ethanol Production Through High Temperature Liquefaction Process," KSBB Journal, 25(4), 357-362(2010).
  10. Moon, Y. H., Koo, B. C., Choi, Y. H., Ahn, S. H., Bark, S. T., Cha, Y. L., An, G. H., Kim, J. K. and Suh, S. J., "Development of "Miscanthus the Promising Bioenergy Crop," Korean Journal of Weed Science, 30(4), 330-339(2010). https://doi.org/10.5660/KJWS.2010.30.4.330
  11. Seo, S. G., Lee, J. E., Jeon, S. B., Lee, B. H., Koo, B. C., Suh, S. J. and Kim, S. H., "Current Status on Miscanthus for Biomass," Korean Journal of Plant Biotechnology, 36(4), 320-326(2009). https://doi.org/10.5010/JPB.2009.36.4.320
  12. Kang, K. Y., Park, D. H. and Jeong, G. T., "Effects of $NH_4Cl$ and $MgCl_2$ on Pretreatment and Xylan Hydrolysis on Miscanthus Straw," Carbohydr. Polym., 92, 1321-1326(2013). https://doi.org/10.1016/j.carbpol.2012.10.019
  13. Kim, J. S., "Production of Levulinic Acid from Gelidium amansii Using Two Step Acid Hydrolysis," Korean Chem. Eng. Res., 51, 438-442(2013). https://doi.org/10.9713/kcer.2013.51.4.438
  14. Kim, T. H., Jeon, Y. J., Oh K. K. and Kim, T. H., "Production of Furfural and Cellulose from Barley Straw Using Acidified Zinc Chloride," Korean J. Chem. Eng., 30, 1339-1346(2013). https://doi.org/10.1007/s11814-013-0068-x
  15. Yemis, O. and Mazza, G., "Optimization of Furfural and 5-hydroxymethylfurfural Production from Wheat Straw by a Microwave-assisted Process," Bioresour. Technol., 109, 215-223(2012). https://doi.org/10.1016/j.biortech.2012.01.031
  16. Vazquez, M., Oliva, M., Tellez-Luis, S. J. and Ramirez, J. A., "Hydrolysis of Sorghum Straw Using Phoshoric Acid: Evaluation of Furfural Production," Bioresour. Technol., 98, 3053-3060(2007). https://doi.org/10.1016/j.biortech.2006.10.017
  17. Mansilla, D. H., Baeza, J., Urzua, S., Maturana, G., Villasenor, J. and Duran, N., "Acid-catalysed Hydrolysis of Rice Hull: Evaluation of Furfural Production," Bioresour. Technol., 66, 189-193(1998). https://doi.org/10.1016/S0960-8524(98)00088-1

Cited by

  1. Investigation of Furfural Yields of Liquid Hydrolyzate during Dilute Acid Pretreatment Process on Quercus Mongolica using Response Surface Methodology vol.44, pp.1, 2016, https://doi.org/10.5658/WOOD.2016.44.1.85
  2. 푸르푸랄의 화학적 촉매전환을 통한 테트라히드로푸르푸릴 알코올 생산 공정 개발 및 경제성 평가 vol.55, pp.5, 2014, https://doi.org/10.9713/kcer.2017.55.5.609