DOI QR코드

DOI QR Code

Structural and Optical Characteristics of $Cd_xZn_{1-x}O$ Thin Films with Various Cd Concentrations Prepared by a Dip-Coating Process

딥코팅 방법으로 성장한 $Cd_xZn_{1-x}O$ 박막의 Cd 농도 변화에 따른 구조적 및 광학적 특성

  • Ji, Iksoo (Department of Nano Engineering, Inje University) ;
  • Park, Hyunggil (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, Younggyu (Department of Nano Engineering, Inje University) ;
  • Kim, Soaram (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Nam, Giwoong (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, Yangsoo (Department of Nano Engineering, Inje University) ;
  • Leem, Jae-Young (Department of Nano Engineering, Inje University)
  • 지익수 (인제대학교 나노공학부) ;
  • 박형길 (인제대학교 나노메뉴팩쳐링연구소 나노시스템공학과) ;
  • 김영규 (인제대학교 나노공학부) ;
  • 김소아람 (인제대학교 나노메뉴팩쳐링연구소 나노시스템공학과) ;
  • 남기웅 (인제대학교 나노메뉴팩쳐링연구소 나노시스템공학과) ;
  • 김양수 (인제대학교 나노공학부) ;
  • 임재영 (인제대학교 나노공학부)
  • Received : 2013.06.13
  • Published : 2014.04.15

Abstract

Ternary $Cd_xZn_{1-x}O$ thin films are deposited by a sol-gel dip-coating method onto quartz substrates with various amounts of Cd content (x = 0, 0.05, 0.15, and 0.25). The structural and optical properties of the $Cd_xZn_{1-x}O$ thin films are investigated using x-ray diffraction (XRD), photoluminescence (PL), and (ultraviolet-visible) (UV-Vis) spectroscopy. In the XRD patterns, the intensity of the diffraction peaks for ZnO decreases, while the intensity of the diffraction peaks for CdO increases with increases in the Cd content. Above x = 0.15, both diffraction peaks for ZnO and CdO are observed in the XRD pattern, and this indicates that the wurtzite structure for ZnO and the rock-salt structure for CdO coexist in CdZnO thin films. The PL spectra of the films results demonstrate that the near band edge emission peaks in the ultraviolet region shift to lower energy range (red-shift) and the deep level emission peaks at the visible region decreases with increases in the Cd content. The optical properties such as transmittance, optical band gap, and Urbach energy are calculated using the optical data. Using linear fitting of the absorption edge, the band gap energies of the thin films are derived as 3.27, 3.19, 3.12, and 3.03 eV for x = 0, 0.05, 0.15 and 0.25, respectively. In addition, the bowing parameter for the energy band gap of $Cd_xZn_{1-x}O$ is estimated to be $E_g(x)=3.3-1.2x+x^2$.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. J. Petersen, C. Brimont, M. Gallart, O. Cregut, G. Schmerber, P. Gilliot, B. Honerlage, C. Ulhaq-Bouillet, J. L. Rehspringer, C. Leuvrey, S. Colis, H. Aubriet, C. Becker, D. Ruch, A. Slaoui, and A. Dinia, J. Appl. Phys. 104, 113539 (2008). https://doi.org/10.1063/1.3021358
  2. S. Vijayalakshmi, S. Venkataraj, and R. Jayavel, J. Phys. D. Appl. Phys. 41, 245403 (2008). https://doi.org/10.1088/0022-3727/41/24/245403
  3. A. Singh, D. Kumar, P. K. Khanna, B. C. Joshi, and M. Kumar, Appl. Surf. Sci. 258, 1881 (2011). https://doi.org/10.1016/j.apsusc.2011.10.096
  4. R. Chandiramouli and B. G. Jeyaprakash, Solid. State. Sci. 16, 102 (2013). https://doi.org/10.1016/j.solidstatesciences.2012.10.017
  5. M. J. Cheon, S. Kim, G. Nam, K. G. Yim, M. S. Kim, and J. Y. Leem, Kor. J. Met. Mater. 49, 583 (2011). https://doi.org/10.3365/KJMM.2011.49.7.583
  6. E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Goncalves, A. J. S. Marques, R. F. P. Martins, L. M. N. Pereira, Appl. Phys. Lett. 85, 2541 (2004). https://doi.org/10.1063/1.1790587
  7. T. Minami, Semicond. Sci. Tech. 20, S35 (2005). https://doi.org/10.1088/0268-1242/20/4/004
  8. A. O. Musa, T. Akomolafe, and M. J. Carter, Sol. Energ. Mat. Sol. C 51, 305 (1998). https://doi.org/10.1016/S0927-0248(97)00233-X
  9. Y. Y. Noh and O. S. Song, Korean J. Met. Mater. 51, 901 (2013). https://doi.org/10.3365/KJMM.2013.51.12.901
  10. Y. Segawa, A. Ohtomo, M. Kawasaki, H. Koinuma, Z. K. Tang, P. Yu, and G. K. L. Wong, Phys. Status. Solidi. B 202, 669 (1997). https://doi.org/10.1002/1521-3951(199708)202:2<669::AID-PSSB669>3.0.CO;2-T
  11. C. X. Xu, X. W. Sun, Z. L. Dong, and M. B. Yu , J. Cryst. Growth. 270, 498 (2004). https://doi.org/10.1016/j.jcrysgro.2004.07.010
  12. B. Liu and H. C. Zeng, J. Am. Chem. Soc. 125, 4430 (2003). https://doi.org/10.1021/ja0299452
  13. H. W. Ryu, B. S. Park, S. A. Akbar, W. S. Lee, K. J. Hong, Y. J. Seo, D. C. Shin, J. S. Park, and G. P. Choi, Sensor. Actuat. B Chem. 96, 717 (2003). https://doi.org/10.1016/j.snb.2003.07.010
  14. S. Kim, G. Nam, K. G. Yim, J. Lee, Y. Kim, and J. Y. Leem, Electron. Mat. Lett. 3, 293 (2013).
  15. L. Li, Z. Yang, Z. Zuo, J. H. Lim, and J. L. Liu, Appl. Surf. Sci. 256, 4734 (2010). https://doi.org/10.1016/j.apsusc.2010.02.083
  16. W. Water, and S. Y. Chu, Mater. Latt. 55, 67 (2002). https://doi.org/10.1016/S0167-577X(01)00621-8
  17. I. Shtepliuk, V. Khranovskyy, G. Lashkarev, V. Khomyak, V. Lazorenko, A. Ievtushenko, M. Syväjärvi, V. Jokubavicius, and R. Yakimova, Solid. State. Electron. 81, 72 (2013). https://doi.org/10.1016/j.sse.2013.01.015
  18. S. Kim, M. S. Kim, G. Nam, and J. Y. Leem, Electron. Mater. Lett. 8, 445 (2012). https://doi.org/10.1007/s13391-012-2071-5
  19. T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, and S. Börner, Appl. Phys. Lett. 89, 182107 (2006). https://doi.org/10.1063/1.2364146
  20. J. P. Richters, T. Voss, L. Wischmeier, I. Rückmann, and J. Gutowski, J. Kor. Phys. Soc. 53, 2844 (2008). https://doi.org/10.3938/jkps.53.2844
  21. Z. Yang, L. Li, Z. Zuo, and J. L. Liu, J. Cryst. Growth. 312, 68 (2009). https://doi.org/10.1016/j.jcrysgro.2009.10.013
  22. F. K. Shan, G. X. Liu, W. J. Lee, and B. C. Shin, J. Cryst. Growth. 291, 328 (2006). https://doi.org/10.1016/j.jcrysgro.2006.03.036
  23. B. K. Sonawane, V. Shelke, M. P. Bhole, and D. S. Patil, J. Phys. Chem. Solids. 72, 1442 (2011). https://doi.org/10.1016/j.jpcs.2011.08.022
  24. D. V. Sathish, C. R. Krishna, C. V. Reddy, U. S. U. Thampy, and R. V. S. S. N. Ravikumar, Phys. Scripa. 86, 035708 (2012). https://doi.org/10.1088/0031-8949/86/03/035708
  25. X. Ma, P. Chen, R. Zhang, D. Yang, J. Alloy. Compd. 509, 6599 (2011). https://doi.org/10.1016/j.jallcom.2011.03.101
  26. A. A. Ziabari and F. E. Ghodsi, Thin. Solid. Films. 520, 1228 (2011). https://doi.org/10.1016/j.tsf.2011.06.075
  27. R. K. Gupta, M. Cavas, and F. Yakuphanoglu, Spectrochim. Acta. A 95, 107 (2012). https://doi.org/10.1016/j.saa.2012.04.012