DOI QR코드

DOI QR Code

Development of Thin Gaseous Ionization Detectors for Measurements of High-energy Hadron Beams

  • Received : 2014.01.06
  • Accepted : 2014.01.23
  • Published : 2014.04.15

Abstract

Thin gaseous ionization detectors have been developed based on a current-integration mode for measurements of high-energy hadron beams. In the present detector R&D, two different types of prototype detectors with an active area of $16{\times}16cm^2$, each equipped with 256-signal processing channels, were manufactured and tested with 43-MeV protons provided by the MC50 proton cyclotron at the Korea Institute of Radiological and Medical Science (KIRAMS). The first one was equipped with a single gas electron multiplier (GEM), and the second one was a thin-plane ionization detector without the GEM foil loaded. The linearities of the detector responses for both detectors were examined for various proton-beam intensities. The quantitative accuracies for the channel-response data and for the total detector responses measured for 43-MeV protons were 0.4% and 0.34%, respectively. We conclude from the beam test that operating both types of detectors in the current-integration mode will allow quality measurements of dynamic-mode hadron beams to be performed with accuracies of better than 1%.

Keywords

References

  1. S. Lee, B. Hong, K. S. Lee, B. Mulilo and S. K. Park, Nucl. Instr. Meth. A 724, 6 (2013). https://doi.org/10.1016/j.nima.2013.05.053
  2. C. Kim et al., J. Korean Phys. Soc. 60, 725 (2012). https://doi.org/10.3938/jkps.60.725
  3. K. S. Lee et al., J. Korean Phys. Soc. 59, 2002 (2011). https://doi.org/10.3938/jkps.59.2002
  4. B. S. Moon, B. Hong, J. Jang, M. S. Jeong, M. Jo, E. A. Ju, K. S. Lee, S. Park and K. S. Sim, J. Korean Phys. Soc. 56, 1088 (2010). https://doi.org/10.3938/jkps.56.1088
  5. T. Bortfeld, Phys. Med. Biol. 51, R363 (2006). https://doi.org/10.1088/0031-9155/51/13/R21
  6. M. Kramer, O. Haberer, G. Kraft, D. Schardt and U. Weber, Phys. Med. Biol. 45, 3299 (2000). https://doi.org/10.1088/0031-9155/45/11/313
  7. B. Schaffner, E. Pedroni and A. Lomax, Phys. Med. Biol. 44, 27 (1999). https://doi.org/10.1088/0031-9155/44/1/004
  8. T. Inaniwa, T. Furukawa, S. Sato, T. Tomitani, M. Kobayashi, S. Minohara, K. Noda and T. Kanai, Nucl. Instr. Meth. B 266, 2194 (2007).
  9. Y. Futami, T. Kanai, M. Fujita, H. Tomura, A. Higashi, N. Matsufuji, N. Miyahara, M. Endo and K. Kawachi, Nucl. Instr. Meth. A 430, 143 (1999). https://doi.org/10.1016/S0168-9002(99)00194-1
  10. S. Duarte Pinto, M. Villa, M. Alfonsi, I. Brock, G. Croci, E. David, R. de Oliveira, L. Ropelewski and M. van Stenis, J. Inst. P12009 (2009).
  11. V. Anferov, Nucl. Instr. Meth. Phys. A 496, 222 (2003). https://doi.org/10.1016/S0168-9002(02)01625-X
  12. S. Bachmann, A. Bressan, S. Kappler, B. Ketzer, M. Deutel, L. Ropelewski, F. Sauli and E. Schulte, CERNOPEN-2000-299 (2000).
  13. M. Capeans, B. Ketzer, A. Placci, L. Ropelewski, F. Sauli and M. van Stenis, CERN-EP/TA1-CH-1211 (2000).
  14. P. Abbon et al., Nucl. Instr. Meth. A 577, 455 (2007). https://doi.org/10.1016/j.nima.2007.03.026
  15. T. Ferbel, Experimental Techniques in High Energy Physics (Addison-Wesley, New York, 1987).

Cited by

  1. Radiation tests for a single-GEM-loaded gaseous detector vol.65, pp.9, 2014, https://doi.org/10.3938/jkps.65.1367
  2. Test of a Multilayer Dose-Verification Gaseous Detector with Raster-Scan-Mode Proton Beams vol.4, pp.5, 2014, https://doi.org/10.5573/ieiespc.2015.4.5.297
  3. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview vol.14, pp.3, 2014, https://doi.org/10.1007/s13391-018-0033-2