DOI QR코드

DOI QR Code

Electrochemical Properties of Activated Carbon Supecapacitor Containing Sulfonated Polypropylene Separator Coated with a Hydrogel Polymer Electrolyte

하이드로겔 고분자 전해질이 코팅된 술폰화 폴리프로필렌 격리막을 포함하는 활성탄 수퍼커패시터 특성

  • Yoon, Choong Sub (Department of Chemical and Biological Engineering/Adranced Materials Eng., Hanbat National University) ;
  • Ko, Jang Myoun (Department of Chemical and Biological Engineering/Adranced Materials Eng., Hanbat National University) ;
  • Latifatu, Mohammed (Department of Chemical and Biological Engineering/Adranced Materials Eng., Hanbat National University) ;
  • Lee, Hae Soo (Department of Chemical and Biological Engineering/Adranced Materials Eng., Hanbat National University) ;
  • Lee, Young-Gi (Research Section of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Kim, Kwang Man (Research Section of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Won, Jung Ha (Department of Chemical and Biological Engineering/Adranced Materials Eng., Hanbat National University) ;
  • Jo, Jeongdai (Department of Printed Electronics, Korea Institute of Machinery and Materials (KIMM)) ;
  • Jang, Yunseok (Department of Printed Electronics, Korea Institute of Machinery and Materials (KIMM)) ;
  • Kim, Jong Huy (Energy Storage Department, Korea Institute of Energy Research (KIER))
  • 윤충섭 (한밭대학교 화학생명공학과/신소재공학과) ;
  • 고장면 (한밭대학교 화학생명공학과/신소재공학과) ;
  • 모하메드 라티파투 (한밭대학교 화학생명공학과/신소재공학과) ;
  • 이해수 (한밭대학교 화학생명공학과/신소재공학과) ;
  • 이영기 (한국전자통신연구원 전력제어소자연구실) ;
  • 김광만 (한국전자통신연구원 전력제어소자연구실) ;
  • 원정하 (한밭대학교 화학생명공학과/신소재공학과) ;
  • 조정대 (한국기계연구원 인쇄전자연구실) ;
  • 장윤석 (한국기계연구원 인쇄전자연구실) ;
  • 김종휘 (한국에너지기술연구원 에너지저장연구단)
  • Received : 2014.03.05
  • Accepted : 2014.04.02
  • Published : 2014.10.01

Abstract

Sulfonated polypropylene (S-PP) is prepared by sulfuric acid-acetone aldol condensation reaction of polypropylene (PP) separator to yield hydrophilic separator surface with a moderate amount of $-SO_3H$ groups. Activated carbon supercapacitor is also fabricated adopting the S-PP separator coated with potassium polyacrylate (PAAK) hydrogel polymer electrolyte. As a result, the hydrophilic surface of S-PP separator involves better physical and electrochemical properties such as decrease in contact angle, improvements of wettability, electrolyte uptake, and ionic conductivity to give higher specific capacitance and long cycle-life.

폴리프로필렌(PP) 격리막의 표면을 황산-acetone 알돌 응축반응을 통해 술폰화 폴리프로필렌(S-PP) 격리막을 제조하고 표면기 분석과 접촉각 측정을 통해 $-SO_3H$ 그룹이 다량 분포된 친수성 표면으로 전환되었음을 밝혔다. 또한 potassium polyacrylate (PAAK) 하이드로겔 고분자 전해질로 S-PP 표면을 코팅하고 이를 활성탄 수퍼커패시터에 적용하여 그 전기화학적 특성을 조사하였다. 결과적으로 S-PP 격리막은 친수성 표면으로 인하여 비록 전기화학적 안정성은 감쇠하지만, 접촉각 감소, 젖음성 향상, 전해질 함침량 증대, 이온전도도 향상, 계면저항 감소 등의 효과를 발생시켜 결국 커패시터적 특성의 향상, 즉 비축전용량과 사이클 수명의 향상을 구현할 수 있다.

Keywords

References

  1. Selvakumar, M. and Pitchumani, S., "Hybrid Supercapacitor Based on Poly(aniline-co-m-anilicacid) and Activated Carbon in Non-aqueous Electrolyte," Korean J. Chem. Eng., 27(3), 977-982(2010). https://doi.org/10.1007/s11814-010-0120-z
  2. Latifatu, M., Ko, J. M., Lee, Y.-G., Kim, K. M., Jo, J., Jang, Y., Yoo, J. J. and Kim, J. H., "Electrochemical Properties of Activated Carbon Supercapacitor Containing Poly(acrylonitrile) Nonwoven Separator Coated by a Hydrogel Polymer Electrolyte," Korean Chem. Eng. Res., 51(5), 550-555(2013). https://doi.org/10.9713/kcer.2013.51.5.550
  3. Kim, J. Y. and Lim, D. Y., "Surface-Modified Membrane as a Separator for Lithium-ion Polymer Battery," Energies, 3(4), 866-885(2010). https://doi.org/10.3390/en3040866
  4. Wu, G. M. Lin, S. J. and Yang, C. C., "Preparation and Characterization of High Ionic Conducting Alkaline Non-woven Membranes by Sulfonation," J. Memb. Sci., 284(1-2), 120-127(2006). https://doi.org/10.1016/j.memsci.2006.07.025
  5. Wu, G. M., Lin, S. J., You, J. H. and Yang, C. C., "Study on High-Anionic Conducting Sulfonated Microporous Membranes for Zinc-Air Electrochemical Cells," Mater. Chem. Phys., 112(3), 798-804(2008). https://doi.org/10.1016/j.matchemphys.2008.06.058
  6. Kane, S. M., Timonen, R. S. and Leu, M.-T., "Heterogeneous Chemistry of Acetone in Sulfuric Acid Solutions: Implications for the Upper Troposphere," J. Phys. Chem. A, 103(46), 9259-9265(1999). https://doi.org/10.1021/jp9926692
  7. Kim, K. M., Latifatu, M., Lee, Y.-G., Ko, J. M., Kim, J. H. and Cho, W. I., "Effect of Ceramic Filler-Containing Polymer Hydrogel Electrolytes Coated on the Polyolefin Separator on the Electrochemical Properties of Activated Carbon Supercapacitor," J. Electroceramics, in press (2014) DOI: 10.1007/s10832-013-9860-6.
  8. Sowa, M. G., Fischer, D., Eysel, H. H. and Mantsch, H. H., "FTIR PAS Depth Profiling Investigation of Polyethylene Surface Sulfonation," J. Mol. Struct., 379(1-3), 77-85(1996). https://doi.org/10.1016/0022-2860(95)09057-6
  9. Tada, H. and Ito, S., "Conformational Change Restricted Selectivity in the Surface Sulfonation of Polypropylene with Sulfuric Acid," Langmuir, 13(15), 3982-3989(1997). https://doi.org/10.1021/la960885l
  10. Myhre, C. E. L., Christensen, D. H., Nicolaisen, F. M. and Nielsen, C. J., "Spectroscopic Study of Aqueous $H_2SO_4$ at Different Temperatures and Compositions: Variations in Dissociation and Optical Properties," J. Phys. Chem. A, 107(12), 1979-1991(2003). https://doi.org/10.1021/jp026576n

Cited by

  1. Electrochemical Properties of Activated Carbon Supercapacitor Adopting Rayon/Poly(Ethylene Oxide) Separator and a Hydrogel Electrolyte vol.18, pp.3, 2015, https://doi.org/10.5229/JKES.2015.18.3.115
  2. Study on Phase Separation of Carbon Dioxide-reducible Polymer Blends vol.24, pp.1, 2015, https://doi.org/10.5322/JESI.2015.24.1.9
  3. 친수성 실리카와 하이드로겔 전해질이 적용된 활성탄 수퍼커패시터의 전기화학적 특성 vol.54, pp.3, 2014, https://doi.org/10.9713/kcer.2016.54.3.293
  4. 고분자-알칼리 전해질이 코팅된 Poly(acrylonitrile) 분리막을 적용한 활성탄 수퍼커패시터 특성 vol.55, pp.4, 2014, https://doi.org/10.9713/kcer.2017.55.4.467
  5. 염화암모늄 전해질에 포함된 퀴논 레독스 활물질 조합을 이용한 수계 레독스 흐름 전지 성능 평가 vol.57, pp.2, 2014, https://doi.org/10.9713/kcer.2019.57.2.239
  6. Chemical treatment of Ag paste electrodes for surface energy control vol.704, pp.1, 2020, https://doi.org/10.1080/15421406.2020.1741810