DOI QR코드

DOI QR Code

Preparation of a Novel PU-LMO Adsorbent by Immobilization of LMO on Polyurethane Foam for Recovery of Lithium Ions

폴리우레탄 폼에 LMO를 고정화하여 리튬이온 회수를 위한 새로운 PU-LMO 흡착제의 제조

  • You, Hae-Na (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • Received : 2014.07.17
  • Accepted : 2014.08.27
  • Published : 2014.09.30

Abstract

In this study, PU-LMO was made by immobilization of LMO on urethane foam (PU) with using an EVA as a binder. PU-LMO was characterized by using X-Ray Diffractometer (XRD) and Scanning Electron Microscopy (SEM). The optimal ratio of EVA/LMO for preparation of PU-LMO was 0.26 gEVA/gLMO. The adsorption of lithium ions by PU-LMO was found to follow the pseudo-second-order kinetic model. The equilibrium data fitted well with Langmuir isotherm model and the maximum removal capacity of lithium ions was 17.09 mg/g. The PU-LMO was found to have a remarkably high selectivity of lithium ions and high adsorption capacity because the distribution coefficient ($K_d$) of lithium ion was higher than those of other metal ions.

본 연구에서는 EVA를 바인더로 사용하여 우레탄 폼(PU)에 LMO를 고정화한 PU-LMO를 제조하였다. XRD 및 SEM 분석을 통해서 EVA에 의해 LMO가 폴리우레탄에 잘 고정화된 것을 확인할 수 있었다. PU-LMO를 제조시에 EVA/LMO의 최적비율은 0.26이었다. PU-LMO에 의한 리튬이온의 흡착 속도는 유사 2차 속도 모델식에 잘 부합하였다. 평형실험 데이터는 Langmuir 흡착 등온식에 잘 적용되었으며, 최대 흡착량은 17.09 mg/g이었다. PU-LMO는 리튬이온에 대한 분배계수($K_d$)가 다른 금속들의 $K_d$ 값에 비해 높게 나타나 뛰어난 리튬 이온 선택성과 높은 흡착량을 보였다.

Keywords

References

  1. Chitrakar, R., Kanoh, H., Miyai, Y., and Ooi, K., "Recovery of Lithium from Seawater Using Manganese Oxide Adsorbent $(H_{1.6}Mn_{1.6}O_4)$ Derived from $Li_{1.6}Mn_{1.6}O_4$," Ind. Eng. Chem. Res., 40, 2054-2058 (2001). https://doi.org/10.1021/ie000911h
  2. Chon, U., Han, G., Kim, K., and Kim, K. H., "Current Status of Lithium Resoures (in Korean)," J. Korean Inst. Res. Rec., 19, 3-8 (2010).
  3. Yanagase, K., Tetsutaro, Y., Kentaro, K., and Matsuoka, T., "The Recovery of Lithium from Geothermal Water in the Hatchobaru area of Kyushu, Japan," Bull. Chem. Soc. Jpn., 56, 2490-2498 (1983). https://doi.org/10.1246/bcsj.56.2490
  4. Kim, Y. S., In, G., and Choi, J. M., "Chemical Equilibrium and Synergism for Solvent Extraction of Trace Lithium with Thenoyltrifluoroacetone in the Presence of Trioctylphosphine Oxide," Bull. Korean Chem. Soc., 24, 1495-1500 (2003). https://doi.org/10.5012/bkcs.2003.24.10.1495
  5. Seron, A., Benaddi, H,. Beguin, F., Frackowiak, E., Bretelle, J. L., Thiry, M.C., Bandosz, T. J., Jagiello, J., and Schwarz, J. A., "Sorption and Desorption of Lithium Ions from Activated Carbons," Carbon, 34, 481-487 (1996). https://doi.org/10.1016/0008-6223(95)00200-6
  6. You, H. N., Lee, D. H., and Lee, M. G., "Synthesis of Lithium Manganese Oxide by Wet Mixing and Removal Characteristic of Lithium Ion," Clean Technol., 19 446-452 (2013). https://doi.org/10.7464/ksct.2013.19.4.446
  7. Kobayashi, T., Yoshimoto, M., and Nakao, K., "Preparation and Characterization of Immobilized Chelate Extractant in PVA Gel Beads for an Efficient Recovery of Copper(II) in Aqueous Solution," Ind. Eng. Chem. Res., 49, 11652-11660 (2010). https://doi.org/10.1021/ie101113s
  8. Navarrete, C. R., Navarrete, G. A., Valenzuela, C. C., Lopez-Gonzalez, J. D., and Garcia-Rodriguez, A., "Lithium Adsorption by Acid and Sodium Amberlite," J. Coll. Interf. Sci., 264, 60-66 (2003). https://doi.org/10.1016/S0021-9797(03)00299-6
  9. Navarrete, C. R., Navarrete, G. A., Valenzuela, C. C., Lopez-Gonzalez, J. D., and Garcia-Rodriguez, A., "Study of Lithium Ion Exchange by Two Synthetic Zeolites: Kinetics and Equilibrium," J. Coll. Interf. Sci., 306, 345-353 (2007). https://doi.org/10.1016/j.jcis.2006.10.002
  10. Han, Y. S., Kim, H. J., and Park, J. K., "Millimeter-sized Spherical Ion-sieve Foams with Hierarchical Pore Structure for Recovery of Lithium from Seawater," Chem. Eng. J., 210, 482-489 (2012). https://doi.org/10.1016/j.cej.2012.09.019
  11. Ma, L. W., Chen, B. Z., Chen, Y., and Shi, X. C., "Preparation, Characterization and Adsorptive Properties of Foam-type Lithium Adsorbent," Micro. Meso. Mater., 142, 147-153 (2011). https://doi.org/10.1016/j.micromeso.2010.11.028
  12. Onodera, Y., Iwasaki, T., Hayashi, H., and Torii K., "Preparation Method and Lithium Adsorption Property of ${\lambda}-MnO_2$-Silica Composite," Chem. Lett., 19, 1801-1804 (2011).
  13. Umeno, A., Miyai, Y., Takagi, N., Chitrakar, R., Sakane, K., and Ooi, K., "Preparation and Adsorptive Properties of Membrane-type Adsorbents for Lithium Recovery from Seawater," Ind. Eng. Chem. Res., 41, 4281-4287 (2002). https://doi.org/10.1021/ie010847j
  14. Jeong, G. T., Lee, G. Y., Cha, J. M., and Park. D. H., "Removal of Hydrogen Sulfide Using Reticulated Polyurethan Carrier in Biofilter," Korean Chem, Eng. Res., 45, 372-377 (2007).
  15. Ho, Y. S., and McKay, G., "Pseudo-second Order Model for Sorption Processes," Process Biochem., 34, 451-465 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  16. Choi, S. G., "A Study on the Properties of Ethlene-vinyl Acetate Emulsion Blended with SBR, Urethane and Epoxy Latex (in Korean)," Elastomer, 34, 414-422 (1999).
  17. Subramania, A., Angayarkanni, N., and Vasudevan, T., "Effect of PVA with Various Combustion Fuels in Sol-gel Thermolysis Process for the Synthesis of $LiMn_2O_4$ Nanoparticles for Liion Batteries," Mater. Chem. Phys., 102, 19-23 (2007). https://doi.org/10.1016/j.matchemphys.2006.10.004
  18. Zhang, Q. H., Li, S. P., Sun, S. Y., Yin, X. S., and Yu, J. G., "Lithium Selective Desorption on 1-D $MnO_2$ Nanostructure Ion-sieve," Adv. Powder Technol., 20, 432-437 (2009). https://doi.org/10.1016/j.apt.2009.02.008

Cited by

  1. Adsorption Characteristics of Lithium Ions from Aqueous Solution using a Novel Adsorbent SAN-LMO Beads vol.24, pp.5, 2015, https://doi.org/10.5322/JESI.2015.24.5.641