DOI QR코드

DOI QR Code

Three-Dimensional Printed 3D Structure for Tissue Engineering

3 차원 프린팅 기술로 제작된 조직공학용 3 차원 구조체

  • 박정훈 (포항공과대학교 기계공학과) ;
  • 장진아 (포항공과대학교 융합생명공학부) ;
  • 조동우 (포항공과대학교 기계공학과)
  • Received : 2014.03.11
  • Accepted : 2014.07.29
  • Published : 2014.10.01

Abstract

One of the main issues in tissue engineering has been the development of a three-dimensional (3D) structure, which is a temporary template that provides the structural support and microenvironment necessary for cell growth and differentiation into the target tissue. In tissue engineering, various biomaterials and their processing techniques have been applied for the fabrication of 3D structures. In particular, 3D printing technology enables the fabrication of a complex inner/outer architecture using a computer-aided design and manufacturing (CAD/CAM) system, and it has been widely applied to the fabrication of 3D structures for tissue engineering. Novel cell/organ printing techniques based on 3D printing have also been developed for the fabrication of a biomimetic structure with various cells and biomaterials. This paper presents a comprehensive review of the functional scaffold and cell-printed structures based on 3D printing technology and the application of this technology to various kinds of tissues regeneration.

조직공학 분야에서의 3 차원 구조체는 세포의 성장과 분화를 유도하기 위한 미세 환경을 제공하고, 재생하고자 하는 조직의 형태를 유지할 수 있도록 지탱해 주는 역할을 수행한다. 현재까지 다양한 생체재료 및 이의 가공 기법들이 이러한 3 차원 구조체를 제작하는데 적용되고 있다. 특히, 3 차원 프린팅 기술은 다양한 재료를 이용하여 원하는 외부 형상과 내부 구조를 제작할 수 있기 때문에 오늘날 조직공학 분야에 많이 이용되고 있고, 이 기술을 통해 새로운 조직공학적 접근 방법도 시도되고 있다. 본 논문에서는, 현재 조직공학 분야에 적용되고 있는 3 차원 프린팅 기술과, 이를 통해 제작된 기능성 인공지지체 및 세포 프린팅 구조체, 그리고 이의 다양한 조직공학적 적용에 대해서 서술하고자 한다.

Keywords

References

  1. Ma, P. X., 2004, "Scaffolds for Tissue Fabrication," Materials today, Vol. 7, No. 5, pp. 30-40.
  2. Sachlos, E. and Czernuszka, J. T., 2003, "Making Tissue Engineering Scaffolds Work. Review: the Application of Solid Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds," Eur. Cell Mater., Vol. 5 No. 29, pp. 39-40.
  3. Ho, M. H., Kuo, P. Y., Hsieh, H. J., Hsien, T. Y., Hou, L. T., Lai, J. Y. and Wang, D. M., 2004, "Preparation of Porous Scaffolds by Using Freeze-extraction and Freeze-gelation Methods, " Biomaterials, Vol. 25, No. 1, pp. 129-138. https://doi.org/10.1016/S0142-9612(03)00483-6
  4. Lo, H., Ponticiello, M. S. and Leong, K. W., 1995, "Fabrication of Controlled Release Biodegradable Foams by Phase Separation," Tissue engineering, Vol. 1, No. 1, pp. 15-28. https://doi.org/10.1089/ten.1995.1.15
  5. Nam, Y. S., Yoon, J. J. and Park, T. G., 2003, "A Novel Fabrication Method of Macroporous Biodegradable Polymer Scaffolds Using Gas Foaming Salt as a Porogen Additive," Biomaterials, Vol. 24, No. 13, pp. 2323-2329. https://doi.org/10.1016/S0142-9612(03)00024-3
  6. Liao, C. J., Chen, C. F., Chen, J. H., Chiang, S. F., Lin, Y. J. and Chang, K. Y., 2002, "Fabrication of Porous Biodegradable Polymer Scaffolds Using a Solvent Merging/Particulate Leaching Method," Journal of biomedical materials Research: Part A, Vol. 59, No. 4, pp. 676-681. https://doi.org/10.1002/jbm.10030
  7. Hutmacher, D. W., Sittinger, M. and Risbud, M. V., 2004, "Scaffold-based Tissue Engineering: Rationale for Computer-aided Desing and Solid Free-form Fabrication Systems," TRENDS in Biotechnology, Vol. 22, No. 7, pp. 354-362. https://doi.org/10.1016/j.tibtech.2004.05.005
  8. Yeong, W.-Y., Chua, C.-K., Leong, K.-F. and Chandrasekaran, M, 2004, "Rapid Prototyping in Tissue Engineering: Challenges and Potential," TRENDS in Biotechnology, Vol. 22, No. 12, pp. 643-652. https://doi.org/10.1016/j.tibtech.2004.10.004
  9. Seol, Y.-J., Kang, T.-Y. and Cho, D.-W., 2012, "Solid Freeform Fabrication Technology Applied to Tissue Engineering with Various Biomaterials," Soft matter, Vol. 8, No. 6, pp. 1730-1735. https://doi.org/10.1039/c1sm06863f
  10. Giannitelli, S. M., Accoto, D., Trombetta, M. and Rainer, A., 2014, "Current Trends in the Design of Scaffolds for Computer-aided Tissue Engineering," Acta Biomaterialia, Vol. 10, No. 2, pp. 580-594. https://doi.org/10.1016/j.actbio.2013.10.024
  11. Leong, K. F., Cheah, C. M. and Chua, C. K., 2003, "Solid Freeform Fabrication of Three-dimensional Scaffolds for Engineering Replacement Tissues and Organs," Biomaterials, Vol. 24, No. 13, pp. 2363-2378. https://doi.org/10.1016/S0142-9612(03)00030-9
  12. Hollister, S. J., 2005, "Porous Scaffold Design for Tissue Engineering," Nature materials, Vol. 4, No. 7, pp. 518-524. https://doi.org/10.1038/nmat1421
  13. Jung, J. W., Kang, H.-Y., Kang, T.-Y., Park, J. and Cho, D.-W., 2012, "Projection Image-generation Algorithm for Fabrication of a Complex Structure using Projection-based Microstereolithography," International Journal of Precision Engineering and Manufacturing, Vol. 13, No. 3, pp. 445-449. https://doi.org/10.1007/s12541-012-0057-8
  14. Cho, D.-W. and Kang, H.-Y., 2012, Computer-Aided Tissue Engineering, Humana Press, New York, pp. 341-356.
  15. Kang, H.-Y., Park, J. H., Kang, T.-Y., Seol, Y.-J. and Cho, D.-W., 2012, "Unit Cell-based Computer-aided Manufacturing System for Tissue Engineering," Biofabrication, Vol. 4, No. 1, 015005. https://doi.org/10.1088/1758-5082/4/1/015005
  16. Lee, S.-J., Kang H.-Y., Park, J. K., Rhie, J.-W., Hahn, S. K. and Cho, D.-W., 2008, "Application of Microstereolithography in the Development of Threedimensional Cartilage Regeneration Scaffolds," Biomedical Microdevices, Vol. 10, No. 2 pp. 233-241. https://doi.org/10.1007/s10544-007-9129-4
  17. Choi, J. S., Kang, H.-Y., Lee, I. H., Ko, T. J. and Cho, D.-W., 2009, "Development of Micro-Stereolithography Technology Using a UV Lamp and Optical Fiber," International Journal of Advanced Manufacturing Technology, Vol. 41, No. 3-4, pp. 281-286. https://doi.org/10.1007/s00170-008-1461-1
  18. Kang, H.-Y., Park, J. H. and Cho, D.-W., 2012, "A Pixel based Solidification Model for Projection based Stereolithography Technology," Sensor and Actuator A: Physical, Vol. 178, pp223-229. https://doi.org/10.1016/j.sna.2012.01.016
  19. Kim, J. Y., Park, J. K., Hahn, S. K. Kwon, T. H. and Cho, D.-W., 2009, "Development of the Flow Behavior Model for 3D Scaffold Fabrication in the Polymer Deposition Process by a Heating Method," Journal of Micromechanics and Microengineering, Vol. 19, No. 10, 105003. https://doi.org/10.1088/0960-1317/19/10/105003
  20. Shim, J.-H., Kim, J. Y., Park, J. K., Hahn, S. K., Rhie, J.-W., Kang, S.-W., Lee, S.-H. and Cho, D.-W., 2010, "Effect of Thermal Degradation of SFF-based PLGA Scaffolds Fabricated Using a Multi-head Deposition System Followed by Change of Cell Growth Rate," Journal of Biomaterials Science, Polymer Edition, Vol. 21, No. 8-9, pp. 1069-1080. https://doi.org/10.1163/092050609X12457428919034
  21. Tan, K. H., Chua, C. K., Leong, K. F., Cheah, C. M., Cheang, P., Abu Bakar, M. S. and Cha, S. W., 2003, "Scaffold Development Using Selective Laser Sintering of Polyetheretherketone-hydroxyapatite Biocomposite Blends," Biomaterials, Vol. 24, No. 18, pp. 3115-3123. https://doi.org/10.1016/S0142-9612(03)00131-5
  22. Williams, J. M., Adewunmi, A., Schek, R. M., Flanagan, C. L., Krebsbach, P. H., Feinberg, Hollister S. J. and Das, S., 2005, "Bone Tissue Engineering Using Polycaprolactone Scaffolds Fabricated via Selective Laser Sintering," Biomaterials, Vol. 26, No. 23, pp. 4817-4827. https://doi.org/10.1016/j.biomaterials.2004.11.057
  23. Hollister, S. J., 2009, "Scaffold Design and Manufacturing: from Concept to Clinic," Advanced materials, Vol. 21, No. 32-33, pp. 3330-3342. https://doi.org/10.1002/adma.200802977
  24. Lee J.-S., Cha H. D., Shim J.-H., Jung J. W., Kim J. Y. and Cho D.-W., 2012, "Effect of Pore Architecture and Stacking Direction on Mechanical Properties of Solid Freeform Fabrication based Scaffold for Bone Tissue Engineering," Journal of Biomedical Materials Research Part A, Vol. 100A, No. 7, pp. 1846-1853. https://doi.org/10.1002/jbm.a.34149
  25. Hutmacher, D.W., Schantz, J. T., Zein, I., Ng, K. W., Tan, K. C. and Teoh, S. H., 2001, "Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling," Journal of Biomedical Materials Research, Vol. 55, No. 2, pp. 203-216. https://doi.org/10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7
  26. Shim, J.-H., Huh, J.-B., Park, J. Y., Jeon, Y.-C., Kang, S. S., Kim, J. Y., Rhie, J.-W. and Cho, D.-W., 2013, "Fabrication of Blended Polycaprolactone/Poly (lacticco- glycolic acid)/$\beta$-Tricalcium Phosphate Thin Membrane using Solid Freeform Fabrication Technology for Guided Bone Regeneration," Tissue Engineering Part A, Vol. 19, No. 3-4, pp. 317-328. https://doi.org/10.1089/ten.tea.2011.0730
  27. Shim, J.-H., Kim, S. E., Park, J. Y., Kundu, J., Kim, S. W., Kang, S. S. and Cho, D.-W., 2014, "3D Printing of rhBMP-2 Loaded Scaffolds with Long-term Delivery for Enhanced Bone Regeneration in a Rabbit Diaphyseal Defect," Tissue Engineering Part A, Accepted for publication.
  28. Kim, J.-Y., Jin, G.-Z., Park, I. S., Kim, J.-N., Chun, S. Y., Park, E. K., Kim, S.-Y., Yoo, J., Kim, S.-H., Rhie, J.-W. and Cho, D.-W., 2010, "Evaluation of SFF-based Scaffolds Seeded with Osteoblasts and HUVECs for Use in vivo Osteogenesis," Tissue Engineering Part A, Vol. 16, No. 7, pp. 2229-2236. https://doi.org/10.1089/ten.tea.2009.0644
  29. Kang, S.-W., Lee, S.-J., Kim, J.-S., Choi, E.-H., Cha, B.-H., Shim, J.-H., Cho, D.-W. and Lee, S.-H., 2010, "Effect of a Scaffold Fabricated Thermally from Acetylated PLGA on the Formation of Engineered Cartilage," Macromolecular Bioscience, Vol. 11, No. 2, pp. 267-274.
  30. Seol, Y.-J., Park, D. Y., Park, J. Y., Kim, S. W., Park, S. J. and Cho, D.-W., 2013, "A New Method of Fabricating Robust Freeform 3D Ceramic Scaffolds for Bone Tissue Regeneration," Biotechnology and Bioengineering, Vol. 110, No. 5, pp. 1444-1455. https://doi.org/10.1002/bit.24794
  31. Kang, K. S., Lee, S. -I., Hong, J. M., Lee, J. W., Cho, H. Y., Son, J. H., Paek, S. H. and Cho, D.-W., 2014, "Hybrid Scaffold Composed of Hydrogel/3Dframework and its Application as a Dopamine Delivery System," Journal of Controlled Release, Vol. 175, pp. 10-16. https://doi.org/10.1016/j.jconrel.2013.12.002
  32. Taboas, J. M., Maddox, R. D., Krebsbach, P. H. and Hollister, S. J., "Indirect Solid Free Form Fabrication of Local and Global Porous, Biomimetic and Composite 3D Polymer-ceramic Scaffolds," Biomaterials, Vol. 24, No. 1, pp. 181-194.
  33. Mantila, R. S. M., Kemppainen, J. M., Moffitt, E. N., Krebsbach, P. H. and Hollister, S. J., 2008, "The Pore Size of Polycaprolactone Scaffolds has Limited Influence on Bone Regeneration in an in Vivo Model," Journal of Biomedical Materials Research Part A, Vol. 92A, No. 1, pp. 359-368.
  34. Lee, K.-W., Wang, S., Lu L., Jabbari, E., Currier, B. L. and Yaszemski, M. J., 2006, "Fabrication and Characterization of Poly(Propylene Fumarate) Scaffolds with Controlled Pore Structures Using 3-Dimensional Printing and Injection Molding," Tissue Engineering, Vol. 12, No. 10, pp. 2801-2811. https://doi.org/10.1089/ten.2006.12.2801
  35. Lee, M., Dunn, J. C. Y. and Wu, B. M., 2005, "Scaffold Fabrication by Indirect Three-dimensional Printing," Biomaterials, Vol. 26, No. 20, pp. 4281-4289. https://doi.org/10.1016/j.biomaterials.2004.10.040
  36. Liu, C. Z., Xia, Z. D., Han, Z. W., Hulley, P. A., Triffitt, J. T. and Czernuszka, J. T., 2008, "Novel 3D Collagen Scaffolds Fabricated by Indirect Printing Technique for Tissue Engineering," Journal of Biomedical Materials Research Part B, Vol. 85, No. 2, pp. 519-528.
  37. Yeong, W.-Y., Chua, C.-K., Leong, K.-F., Chandrasekaran, M. and Lee, M.-W., 2006, "Comparison of Drying Methods in the Fabrication of Collagen Scaffold Via Indirect Rapid Prototyping," Journal of Biomedical Materials Research Part B, Vol. 82, No. 1, pp. 260-266.
  38. Kang, H.-W. and Cho, D.-W., 2012, "Development of an Indirect Stereolithography Technology for Scaffold Fabrication with a Wide Range of Biomaterial Selectivity," Tissue Engineering Part C, Vol. 18, No. 9, pp. 719-729. https://doi.org/10.1089/ten.tec.2011.0621
  39. Park, J. H., Jung J. W., Kang, H.-W. and Cho, D.-W., 2014, "Indirect Three-dimensional (3D) Printing of Synthetic Polymer Scaffold Based on Thermal Molding Process," Biofabrication, Accepted for publication.
  40. Park, J. H., Jung, J. W., Kang, H. W., Joo, Y. H., Lee, J. S. and Cho, D. W., 2012, "Development of a 3D Bellows Tracheal Graft: Mechanical Behavior Analysis, Fabrication and an in Vivo Feasibility Study," Biofabrication, Vol. 4, No. 3, 035004. https://doi.org/10.1088/1758-5082/4/3/035004
  41. Shim, J.-H., Lee, J. S., Kim, J. Y. and Cho, D.-W., 2012, "Bioprinting of a Mechanically Enhanced Three- Dimensional Dual Cell-laden Construct for Osteochondral Tissue Engineering using a Multi-head Tissue/Organ Building System," Journal of Micromechanics and Microengineering, Vol. 22, No. 8, pp. 085014. https://doi.org/10.1088/0960-1317/22/8/085014
  42. Nakamura, M., Kobayashi, A., Takagi, F., Watanabe, A., Hiruma, Y., Ohuchi, K., Iwasaki, Y., Horie, M., Morita, I. and Takatani, S., 2005, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Engineering, Vol. 11, No. 11-12, pp. 1658-1666. https://doi.org/10.1089/ten.2005.11.1658
  43. Arai, K., Iwanaga, S., Toda, H., Genci, C., Nishiyama, Y. and Nakamura, M., 2011, "Three-dimensional Inkjet Biofabrication based on Designed Images," Biofabrication, Vol. 3, No. 3, pp. 034113. https://doi.org/10.1088/1758-5082/3/3/034113
  44. Nakamura, M., Iwanaga, S., Henmi, C., Arai, K. and Nishiyama, Y., 2010, "Biomatrices and Biomaterials for Future Developments of Bioprinting and Biofabrication," Biofabrication, Vol. 2, No. 1, pp. 014110. https://doi.org/10.1088/1758-5082/2/1/014110
  45. Cui, X., Dean, D., Ruggeri, Z. M. and Boland, T., 2010, "Cell Damage Evaluation of Thermal Inkjet Printed Chinese Hamster Ovary Cells," Biotechnology and Bioengineering, Vol. 106, No. 6, pp. 963-969. https://doi.org/10.1002/bit.22762
  46. Derby, B., 2012, "Printing and Prototyping of Tissues and Scaffolds," Science, Vol. 338, No. 6109, pp. 921-926. https://doi.org/10.1126/science.1226340
  47. Ferris, C. J., Gilmore, K. G. and Wallace, G. G., 2013, "Biofabrication: An Overview of the Approaches used for Printing of Living Cells," Applied Microbiology and Biotechnology, Vol. 97, No. 10, pp. 4243-4258. https://doi.org/10.1007/s00253-013-4853-6
  48. Rungseevijitprapa, W. and Bodmeier, R., 2009, "Injectability of Biodegradable in Situ Forming Microparticle Systems (ISM)," European Journal of Pharmaceutical Sciences, Vol. 36, No. 4, pp. 524-531. https://doi.org/10.1016/j.ejps.2008.12.003
  49. Rezende, R. A., Bartolo, P. J., and Mendes, A., 2009, "Rheological Behavior of Alginate Solutions for Biomanufacturing," Journal of Applied Polymer Science, Vol. 113, No. 6, pp. 3866-3871. https://doi.org/10.1002/app.30170
  50. Nair, K., Gandhi, M., Khalil, S., Yan, K. C., Marcolongo, M., Barbee, K. and Sun, W., 2009, "Characterization of Cell Viability during Bioprinting Processes," Biotechnology Journal, Vol. 4, pp. 1168-1177. https://doi.org/10.1002/biot.200900004
  51. Lee, S.-H., Jo, A.R., Choi, G.P., Woo, C.H., Lee, S.J., Kim, B.-S., You, H.-K. and Cho, Y.-S., 2013, "Fabrication of 3D Alginate Scaffold with Interconnected Pores Using Wire-Network Molding Technique," Tissue Engineering and Regenerative Medicine, Vol. 10, pp. 53-59. https://doi.org/10.1007/s13770-013-0366-8
  52. Shim, J.-H., Kim, J. Y., Park, M., Park, J. and Cho, D.-W., 2011, "Development of a Hybrid Scaffold with Synthetic Biomaterials and Hydrogel using Solid Freeform Fabrication Technology," Biofabrication, Vol. 3, No. 3, pp. 034102. https://doi.org/10.1088/1758-5082/3/3/034102
  53. Thomas, J. D., Fussell, G., Sarkar, S., Lowman, A. M. and Marcolongo, M., 2010, "Synthesis and Recovery Characteristics of Branched and Grafted PNIPAAm- PEG hydrogels for the Development of an Injectable Load-bearing Nucleus Pulposus Replacement," Acta Biomaterialia, Vol. 6, No. 4, pp. 1319-1328. https://doi.org/10.1016/j.actbio.2009.10.024
  54. Duan, B., Kapetanovic, E., Hockaday, L. A. and Butcher, J. T., 2013, "Three-dimensional Printed Trileaflet Valve Conduits Using Biological Hydrogels and Human Valve Interstitial Cells," Acta Biomaterialia, Accepted for publication.
  55. Kundu, J., Shim, J.-H., Jang, J., Kim, S.-W. and Cho, D.-W., 2013, "An Additive Manufacturing‐based PCL- Alginate-Chondrocyte Bioprinted Scaffold for Cartilage Tissue Engineering," Journal of Tissue Engineering and Regenerative Medicine, Online Published.
  56. Campos, D. F. D., Blaeser, A., Weber, M., Jäkel, J., Neuss, S., Jahnen-Dechent, W. and Fischer, H., 2013, "Three-dimensional Printing of Stem Cell-laden Hydrogels Submerged in a Hydrophobic High-density Fluid," Biofabrication, Vol. 5, No. 1, pp. 015003. https://doi.org/10.1088/1758-5082/5/1/015003
  57. Wang, X., Yan, Y., Pan, Y., Xiong, Z., Liu, H., Cheng, J., Liu, F. and Lu, Q., 2006, "Generation of Threedimensional Hepatocyte/Gelatin Structures with Rapid Prototyping System," Tissue Engineering, Vol. 12, No. 1, pp. 83-90. https://doi.org/10.1089/ten.2006.12.83
  58. Fedorovich, N. E., De Wijn, J. R., Verbout, A. J., Alblas, J. and Dhert, W. J., 2008, "Three-dimensional Fiber Deposition of Cell-laden, Viable, Patterned Constructs for Bone Tissue Printing," Tissue Engineering Part A, Vol. 14, No. 1, pp. 127-133.
  59. Maher, P. S., Keatch, R. P., Donnelly, K., Mackay, R. E. and Paxton, J. Z., 2009, "Construction of 3D Biological Matrices using Rapid Prototyping Technology," Rapid Prototyping Journal, Vol. 15, No. 3, pp. 204-210. https://doi.org/10.1108/13552540910960307
  60. Duan, B., Hockaday, L. A., Kang, K. H. and Butcher, J. T., 2013, "3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/Gelatin Hydrogels," Journal of Biomedical Materials Research Part A, Vol. 101, No. 5, pp. 1255-1264.
  61. Li, S., Xiong, Z., Wang, X., Yan, Y., Liu, H. and Zhang, R., 2009, "Direct Fabrication of a Hybrid Cell/Hydrogel Construct by a Double-nozzle Assembling Technology," Journal of Bioactive and Compatible Polymers, Vol. 24, No. 3, pp. 249-265. https://doi.org/10.1177/0883911509104094
  62. Pescosolido, L., Schuurman, W., Malda, J., Matricardi, P., Alhaique, F., Coviello, T., van Weeren, P. R., Dhert, J., Hennink, W. E. and Vermonden, T., 2011, "Hyaluronic Acid and Dextran-based Semi-IPN Hydrogels as Biomaterials for Bioprinting," Biomacromolecules, Vol. 12, No. 5, pp. 1831-1838. https://doi.org/10.1021/bm200178w
  63. Pati, F., Jang, J., Ha, D.-H., Kim, S. W., Rhie, J.-W., Shim, J.-H., Kim, D.-H. and Cho, D.-W., 2014, "Printing Three-dimensional Tissue Analogues with Decellularized Extracellular Matrix Bioink," Nature Communications, Vol. 5, No. 3935.
  64. Kang, K. H., Hockaday, L. A. and Butcher, J. T., 2013, "Quantitative Optimization of Solid Freeform Deposition of Aqueous Hydrogels," Biofabrication, Vol. 5, No. 3, pp. 035001. https://doi.org/10.1088/1758-5082/5/3/035001
  65. Fedorovich, N. E., De Wijn, J. R., Verbout, A. J., Alblas, J. and Dhert, W. J., 2008, "Three-dimensional Fiber Deposition of Cell-laden, Viable, Patterned Constructs for Bone Tissue Printing," Tissue Engineering Part A, Vol. 14, No. 1, pp. 127-133.
  66. Wüst, S., Godla, M. E., Müller, R. and Hofmann, S., 2014, "Tunable Hydrogel Composite with Two-step Processing in Combination with Innovative Hardware Upgrade for Cell-based Three-dimensional Bioprinting," Acta Biomaterialia, Vol. 10, No. 2, pp. 630-640. https://doi.org/10.1016/j.actbio.2013.10.016
  67. Loozen, L. D., Wegman, F., Öner, F. C., Dhert, W. J. and Alblas, J., 2013, "Porous Bioprinted Constructs in BMP-2 Non-viral Gene Therapy for Bone Tissue Engineering," Journal of Materials Chemistry B, Vol. 1, No. 48, pp. 6619-6626. https://doi.org/10.1039/c3tb21093f
  68. Fedorovich, N. E., Schuurman, W., Wijnberg, H. M., Prins, H. J., Van Weeren, P. R., Malda, J., Alblas, J. and Dhert, W. J., 2011, "Biofabrication of Osteochondral Tissue Equivalents by Printing Topologically Defined, Cell-laden Hydrogel Scaffolds," Tissue Engineering Part C: Methods, Vol. 18, No. 1, pp. 33-44.
  69. Duan, B., Hockaday, L. A., Kang, K. H. and Butcher, J. T., 2013, "3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/Gelatin Hydrogels," Journal of Biomedical Materials Research Part A, Vol. 101, No. 5, pp. 1255-1264.
  70. Shin, S. R., Bae, H., Cha, J. M., Mun, J. Y., Chen, Y. C., Tekin, H., Shin, H., Farshchi, S., Dokmeci, M. R., Tang, S. and Khademhosseini, A., 2011, "Carbon Nanotube reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation," ACS Nano, Vol. 6, No. 1, pp. 362-372.
  71. Jang, J., Oh, H., Lee, J., Song, T. H., Jeong, Y. H. and Cho, D.-W., 2013, "A Cell-laden Nanofiber/Hydrogel Composite Structure with Tough-soft Mechanical Property," Applied Physics Letters, Vol. 102, No. 21, pp. 211914. https://doi.org/10.1063/1.4808082
  72. Schuurman, W., Khristov, V., Pot, M. W., Rene van Weeren, P., Dhert, W. J. A. and Malda, J., 2011, "Bioprinting of Hybrid Tissue Constructs with Tailorable Mechanical Properties," Biofabrication, Vol. 3, No. 2, pp. 021001. https://doi.org/10.1088/1758-5082/3/2/021001
  73. Lee, J.-S., Hong, J. M., Jung, J. W., Shim, J.-H., Oh, J. H. and Cho, D.-W., 2014, "3D Printing of Composite Tissue with Complex Shape Applied to Ear Regeneration," Biofabrication, Vol. 6, No. 2, pp. 024103. https://doi.org/10.1088/1758-5082/6/2/024103
  74. Gaetani, R., Doevendans, P. A., Metz, C. H. G., Alblas, J., Messina, E., Giacomello, A. and Sluijter, J. P. G., 2012, "Cardiac Tissue Engineering Using Tissue Printing Technology and Human Cardiac Progenitor Cells," Biomaterials, Vol. 33, No. 6, pp. 1782-1790. https://doi.org/10.1016/j.biomaterials.2011.11.003

Cited by

  1. Current advances in three-dimensional tissue/organ printing vol.13, pp.6, 2016, https://doi.org/10.1007/s13770-016-8111-8
  2. Three-Dimensional Printing of Tissue/Organ Analogues Containing Living Cells vol.45, pp.1, 2017, https://doi.org/10.1007/s10439-016-1611-9
  3. Correlation between UV-dose and Shrinkage amounts of Post-curing Process for Precise Fabrication of Dental Model using DLP 3D Printer vol.17, pp.2, 2018, https://doi.org/10.14775/ksmpe.2018.17.2.047