DOI QR코드

DOI QR Code

Toxic Effects of Heavy Metal (Cd, Cu, Zn) on Population Growth Rate of the Marine Diatom (Skeletonema costatum)

중금속(Cd, Cu, Zn)이 해산규조류(Skeletonema costatum)의 개체군 성장률에 미치는 독성영향

  • Hwang, Un-Ki (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Ryu, Hyang-Mi (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Lee, Ju-Wook (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Lee, Seung-Min (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Kang, Han Seung (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center)
  • 황운기 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 류향미 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 이주욱 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 이승민 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 강한승 (국립수산과학원 서해수산연구소 해양생태위해평가센터)
  • Received : 2014.06.13
  • Accepted : 2014.09.12
  • Published : 2014.09.30

Abstract

In this study, we evaluated the toxic effects of heavy metals (Cd, Cu, Zn) on the population growth rate (r) of the marine diatom, Skeletonema costatum. S. costatum. The population growth rate (r) of the species was determined after 96 hrs. of exposure to Cd (0, 0.63, 1.25, 2.50, 5.00, 10.00 ppm), Cu (0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50 ppm) and Zn (0, 0.31, 0.63, 1.25, 2.00, 2.50, 5.00 ppm). It was observed that 'r' in the control (absence of Cd, Cu and Zn) were greater than 0.05, however suddenly decreased with increased heavy metal concentrations. Cd, Cu and Zn reduced 'r' in a dose-dependent manner and a significant reduction were occurred at concentration of greater than 1.25, 1.25 and 2.50 ppm, respectively. Based on the toxicity, the heavy metal were ranked as Cu>Zn>Cd, with EC50 values of 1.11, 2.13 and 6.84 ppm, respectively. The lowest-observed-effective-concentration (LOEC) of 'r' in exposed to Cd, Cu and Zn were 1.25, 1.00, 2.00 ppm, respectively. Precisely, a concentration of greater than 1.25 ppm of Cd, 1.00 ppm of Cu and 2.00 ppm of Zn in marine ecosystems induced toxic effect on the 'r' of S. costatum. Based on our results, we suggested that the 'r' of S. costatum might be a useful bio indicator for the toxicity assessment of heavy metals in marine ecosystems.

해산규조류 Skeletonema cosatatum의 개체군성장률 (r)을 사용하여 중금속 3종(Cd, Cu, Zn)의 독성영향 평가를 수행하였다. S. costatum을 Cd (0, 0.63, 1.25, 2.50, 5.00, 10.00 ppm), Cu (0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50 ppm) 그리고 Zn (0, 0.31, 0.63, 1.25, 2.00, 2.50, 5.00 ppm)에 노출하고 96 h 이후에 r 값을 도출하였다. 대조구(Cd, Cu 그리고 Zn을 포함하지 않은)에서 r은 0.05보다 높았으며 중금속 농도가 증가할수록 r은 감소하였다. 중금속에 의해 농도의존적으로 r이 감소되었고 Cd 농도 1.25, Cu 농도 1.25 그리고 Zn 농도 2.50 ppm 이상의 농도에서 명확한 감소를 나타냈다. 중금속의 독성영향은 Cu>Zn>Cd 순서이며, 이때 $EC_{50}$ 값은 각각 1.11, 2.13 그리고 6.84 ppm으로 나타났다. 중금속 3종(Cd, Cu 그리고 Zn)에 노출된 r의 최소영향농도는 각각 1.25, 1.00, 2.00 ppm으로 나타났다. 이 결과를 바탕으로, 해양환경에서 S. costatum의 r은 Cd 농도가 1.25 ppm 이상, Cu 농도가 1.00 ppm 이상, Zn 농도가 2.00 ppm 이상인 경우에 독성영향을 받았다. 그러므로 S. costatum의 r은 해양환경에서 중금속 독성영향 평가를 위한 매우 유용한 방법으로 판단된다.

Keywords

References

  1. Ahlf W, H Hollert, H Neumann-Hensel and M Ricking. 2002. A guidance for the assessment and evaluation of sediment quality: A german approach based on ecotoxicological and chemical measurements. J. Soil. Sediment. 2:37-42. https://doi.org/10.1007/BF02991249
  2. APHA, AWWA and WEF. 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, pp.1-47.
  3. Atici T, S Ahiska, A Altindag and D Aydin. 2008. Ecological effects of some heavy metals (Cd, Pb, Hg, Cr) pollution of phytoplanktonic algae and zooplanktonic organisms in Sariyar Dam Reservoir in Turkey. Afr. J. Biotechnol. 7:1972-1977. https://doi.org/10.5897/AJB2008.000-5044
  4. Bidwell JR, KW Wheeler and TR Burridge. 1998. Toxicant effects on the zoospore stage of the marine macroalga Ecklonia radiata. Mar. Ecol. Prog. Ser. 163:259-265. https://doi.org/10.3354/meps163259
  5. Burton GA. 1992. Sediment Toxicity Assessment. Lewis Publishers Inc., Chelsea. pp.457.
  6. Chu KW and KL Chow. 2002. Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat. Toxicol. 61:53-64. https://doi.org/10.1016/S0166-445X(02)00017-6
  7. DeForest DK, KV Brix and WJ Adams. 2007. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat. Toxicol. 84:236-246. https://doi.org/10.1016/j.aquatox.2007.02.022
  8. Han TJ, YS Han, GS Park and SM Lee. 2008. Development marine ecotoxicological standard methods for Ulva sporulation test. Kor. J. Soc. Ocean. 13:121-128.
  9. Hwang UK, CW Rhee, SM Lee, KH An and SY Park. 2008. Effects of salinity and standard toxic metals (Cu, Cd) on fertilization and embryo development rates in the sea urchin (Strongylocentrotus nudus). J. Environ. Sci. 17:775-781.
  10. Hwang UK, CW Rhee, KS Kim, KH An and SY Park. 2009. Effects of salinity and standard toxic metals (Cu, Cd) on fertilization and embryo development rates in the sea urchin (Hemicentrotus pulcherrimus). J. Environ. Toxicol. 24:9-16.
  11. Hwang UK, HM Ryu, SG Kim, SY Park and HS Kang. 2012a. Acute toxicity of heavy metal (Cd, Cu, Zn) on the hatching rates of fertilized eggs in the olive flounder (Paralichthys olivaceus). Korean J. Environ. Biol. 30:136-142.
  12. Hwang UK, JS Park, JN Kwon, S Heo, Y Oshima and HS Kang. 2012b. Effect of nickel on embryo development and expression of metallothionein gene in the sea urchin (Hemicentrotus pulcherrimus). J. Fac. Agr., Kyushu Univ. 57:145-149.
  13. Hwang UK, HM Ryu, J Yu and HS Kang. 2013. Toxic effects of arsenic and chromium on the fertilization and embryo development rates in the sea urchin (Hemicentrotus pulcherrimus). Korean J. Environ. Biol. 31:69-77. https://doi.org/10.11626/KJEB.2013.31.2.069
  14. ISO. 1995. Water quality-marine algal growth inhibition test with Skeletonema costatum and Phaeodactylum tricornutum. The International Organization for Standardization. ISO 10253. pp.7.
  15. Lee JS, SM Lee and GS Park. 2008. Development of sediment toxicity test protocols using korea indigenous marine growth inhibition of marine phytoplankton. Kor. J. Soc. Ocean. 13:147-155.
  16. Lundebye AK, MHG Berntssen, SE Wendelar and A Maage. 1999. Biochemical and physiological responses in atlantic salmon (Salmo salar) following dietary exposure to copper and cadmium. Mar. Poll. Bull. 39:137-144. https://doi.org/10.1016/S0025-326X(98)00208-2
  17. Maage A, H Sveir and K julshamn. 1989. A comparison of growth rate and trace element accumulation in Atlantic salmon (Salmo salar) fry four different commercial diets. Aquaculture 79:267-273. https://doi.org/10.1016/0044-8486(89)90467-5
  18. McGeer JC, C Szebedinszky, DG McDonald and CM Wood. 2000. Effects of chronic sublethal exposure to waterbone Cu, Cd or Zn in rainbow trout. Aquat. Toxicol. 50:231-243. https://doi.org/10.1016/S0166-445X(99)00105-8
  19. Novelli ELB, AM Lopes, ASE Rodrigues, BO Ribas. 1999. Superoxide redical and nephrotoxic effect of cadmium exposure. International J. Environ. Heal. Res. 9:109-116. https://doi.org/10.1080/09603129973245
  20. Rand GM and SR Petrocelli. 1985. Fundamentals of Aquatic Toxicology. Hemisphere Publishing Corporation, Washington. pp.666.
  21. Rao MU and V Mohanchand. 1990. Toxicity of zinc smelter wastes to some marine diatoms. Indian J. Mar. Sci. 19:181-186.
  22. Reiley MC. 2007. Science, policy and trends of metals risk assessment at EPA: how understanding metals bioavailability has changed metals risk assessment at USEPA. Aquat. Toxicol. 84:292-298. https://doi.org/10.1016/j.aquatox.2007.05.014
  23. Viarengo A. 1985. Biochemical effects of trace metals. Mar. Pollut. Bull. 16:153-158. https://doi.org/10.1016/0025-326X(85)90006-2
  24. Weideborg M, EA Vik, GD Ofjord and O Kjonno. 1997. Comparison of three marine screening tests and four Oslo and Paris commission procedures to evaluate toxicity of offshore chemicals. Environ. Toxicol. Chem. 16:384-389. https://doi.org/10.1002/etc.5620160238
  25. Yu CM. 1998. A study on the effect of heavy metals on early embryos development of starfish, Kor. J. Environ. Biol. 16:151-156.