DOI QR코드

DOI QR Code

Designing Collective Intelligence-based Instructional Models for Teaching Socioscientific Issues

집단지성 원리를 적용한 과학관련 사회·윤리적 쟁점 수업 모형의 개발

  • Received : 2014.05.12
  • Accepted : 2014.07.28
  • Published : 2014.09.30

Abstract

This study aimed to develop collective intelligence (CI) based instructional models for teaching socioscientific issues on the basis of intimate collaboration with science teachers, and to investigate the participating teachers' perceptions on the effectiveness of the instructional models. Adapting the ADDIE model, we suggested three types of SSI instructional models (i.e. generative model, exploratory model, and decision-making model). Generative models emphasized the process of brainstorming ideas or possible solutions for SSI. Exploratory models focused on providing students opportunities to explore various SSI cases and diverse perspectives to understand its controversial nature and complexity. Decision-making models encouraged students to negotiate or develop a group-consensus on SSI through the dialogical process. After implementing the instructional models in the science classroom, the teachers reported that CI-based SSI instructional models contributed to encouraging students' active participation and collaboration as well as to improving the quality of their argument or discourses on SSI. They also supported the importance of developing collective consciousness on the issues in the beginning of the SSI class, providing independent time and space for reflecting on their personal values and opinions with scientific evidence, and formulating an atmosphere where they freely exchanged opinions and feedback for constructing better collective ideas.

본 연구에서는 과학관련 사회 윤리적 쟁점(SSI)과 집단지성과의 연관성을 고려하여, 집단지성 촉진 전략을 활용한 SSI 수업모형(CI기반 SSI 수업모형)을 현장 과학교사들과 협력적으로 개발하였다. 그리고, 수업모형 개발과정에서 참여 교사들이 SSI 수업에서 집단지성의 효과에 대해 어떻게 인식하는지를 살펴보고자 하였다. 본 연구에서 개발된 CI기반 SSI 수업모형은 SSI 수업에서 교사들이 추구하는 목적에 따라 크게 3개의 유형(발산적 모형, 탐색적 모형, 의사결정 모형)으로 나뉘며, 각 유형 당 2개씩 총 6개가 개발되었다. 첫째, 발산적 모형은 학생들이 주어진 SSI에 대한 의견이나 해결방안을 다양하게 발산해 보도록 하는데 초점을 둔 수업모형으로, 아이디어 생성 수업모형과 미래 상황 예측 수업모형이 해당된다. 둘째, 탐색적 모형은 문제를 둘러싸고 있는 다양한 입장들에 대해 탐색하여 SSI의 복잡성을 이해하는 데 초점을 둔 수업모형으로, 쟁점 탐색 수업모형과 실제 사례 탐색수업모형이 이 유형에 속한다. 셋째, 의사결정 모형은 주어진 SSI에 대해 다양한 입장을 이해하고 가장 합리적으로 집단의 의사결정을 하도록 의견을 수렴하고 조정하는데 초점을 둔 수업모형으로, 집단적 합의 수업모형과 대안 결정 수업모형이 해당된다. 참여교사들은 각 수업모형을 적용해본 결과 SSI 수업에서 집단지성의 원리를 강조한 것이 학생들의 참여도와 협력, 토론과 근거의 질을 높이는 데 기여했다고 보았다. 이를 위해서는 SSI 수업 도입 부분에서 문제해결을 위해 공유된 가치를 형성하는 과정, 개별적으로 자료를 수집할 수 있는 시간을 충분히 갖고 난 후 공유하는 과정, 개인적으로 자료를 수집하여 정리하고 공유할 수 있는 공간의 마련이 중요하다고 응답하였다.

Keywords

References

  1. Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice. New York, NY: Teachers College Press.
  2. Albe, V. (2008). When scientific knowledge, daily life experience, epistemological and social considerations intersect: Students' argumentation in group discussion on a socio-scientific issue. Research in Science Education, 38, 67-90. https://doi.org/10.1007/s11165-007-9040-2
  3. Brown, J., & Isaacs, D. (2008). The world cafe: Awakening collective intelligence and committed action, In M. Tovey (Ed.). Collective intelligence: Creating a prosperous world at peace (pp. 47-54). Oakton, VA: Earth Intelligence Network.
  4. Chang, H., & Lee, H. (2010). College students' decision-making tendencies in the context of socioscientific issues (SSI). Journal of Korean Association in Science Education, 30(7), 887-900.
  5. Cho, H., & Choi, K. (1998). The necessities and current states of educating ethical characteristics of science. Journal of the Korean Association for Research in Science Education, 18(4), 559-570.
  6. Choi, K., & Cho, H. (2002). The teaching/learning procedures and themes for ethical issues in science. Biology Education, 28(4), 408-417.
  7. Connell, S., Fien, J., Lee, J., Sykes, H., & Yencken, D. (1999). 'If it doesn't directly affect you, you don't think about it': A qualitative study of young people's environmental attitudes in two Australian cities. Environmental Education Research, 5(1), 96-113.
  8. Cross, R. T., & Price, R. F. (1996). Science teachers' social conscience and the role of controversial issues in the teaching of science. Journal of Research in Science Teaching, 33(3), 319-333. https://doi.org/10.1002/(SICI)1098-2736(199603)33:3<319::AID-TEA5>3.0.CO;2-W
  9. Dawson, V. M., & Venville, G. (2010). Teaching strategies for developing students' argumentation skills about socioscientific issues in high school genetics. Research in Science Education, 40, 133-148. https://doi.org/10.1007/s11165-008-9104-y
  10. Dori, Y. J., Tal, R. T., & Tsaushu, M. (2003). Teaching biotechnology through case studies: Can we improve higher order thinking skills of nonscience majors? Science Education, 87(6), 767-793. https://doi.org/10.1002/sce.10081
  11. Dreyfus, A., & Roth, Z. (1991). Twelfth-grade biology pupils' opinions on interventions of man in nature: Agreement, indifference and ambivalence. Journal of Research in Science Teaching, 28(1), 81-95. https://doi.org/10.1002/tea.3660280108
  12. Gan, Y., & Zhu, Z. (2007). A learning framework for knowledge building and collective wisdom advancement in virtual learning communities. Educational Technology & Society, 10(1), 206-226.
  13. Hansen, K. H., & Olson, J. (1996). How teachers construe curriculum integration: The Science, Technology, Society (STS) movement as Bildung. Journal of Curriculum Studies, 28(6), 669-682. https://doi.org/10.1080/0022027980280603
  14. Hogan, K. (2002). Small groups' ecological reasoning while making an environmental management decision. Journal of Research in Science Teaching, 39(4), 341-368. https://doi.org/10.1002/tea.10025
  15. Hutchins, E. (1995). How a cockpit remembers its speeds. Cognitive Science, 19, 265-288. https://doi.org/10.1207/s15516709cog1903_1
  16. Jeong, E., & Kim, Y. (2000). Development of a value inquiry model in biology education. Journal of the Korean Association for Research in Science Education, 20(4), 582-598.
  17. Leadbeater, C. (2008). We think: Mass innovation, not mass production. London: Profile Books.
  18. Lee, H., & Chang, H. (2010). Exploration of experienced science teachers' personal practical knowledge of teaching socioscientific issues (SSI). Journal of Korean Association for Science Education, 30(3), 353-365.
  19. Lee, H., & Witz, K. G. (2009). Science teachers' inspiration for teaching socio-scientific issues: Disconnection with reform efforts. International Journal of Science Education, 31, 931-960. https://doi.org/10.1080/09500690801898903
  20. Lee, H., Chang, H., Choi, K., Kim, S., & Zeidler, D. L. (2012). Developing character and values for global citizens: Analysis of preservice science teachers' moral reasoning on socioscientific issues. International Journal of Science Education, 34(6), 925-953. https://doi.org/10.1080/09500693.2011.625505
  21. Lee, H., Yoo, J., Choi, K., Kim, S., Krajcik, J., Herman, B. C., & Zeidler, D. L. (2013). Socioscientific issues as a vehicle for promoting character and values for global citizens. International Journal of Science Education, 35(12), 2079-2113. https://doi.org/10.1080/09500693.2012.749546
  22. Lee, Y., & Lee, S. (2009). Conceptual design principles of collective intelligence. Journal of Educational Technology, 25(4), 213-239.
  23. Levy, P. (1994). L'intelligence Collective: Pour une anthropologie de cyberspace. Paris: La Decouverte.
  24. Means, M. L., & Voss, J. F. (1996). Who reasons well? Two studies of informal reasoning among children of different grade, ability, and knowledge levels. Cognition and Instruction, 14, 139-178. https://doi.org/10.1207/s1532690xci1402_1
  25. Michaelson, L. K., Knignt, A. B., & Fink, L. D. (2002). Team-based learning: A transformative use of small group. Sterling: Greenwood Publishing Group Inc.
  26. Millar, R. (2006). Twenty first century science: Insights from the design and implementation of a scientific literacy approach in school science. International Journal of Science Education, 28(13), 1499-1521. https://doi.org/10.1080/09500690600718344
  27. Ministry of Education Science Technology (MEST). (2011). Korea national curriculum standards(2011-361). Seoul: MEST.
  28. Mueller, M. P., & Zeidler, D. L. (2010). Moral-ethical character and science education: Ecojustice ethics through socioscientific issues (SSI). In D. Tippins, M. Mueller, M. van Eijck, & J. Adams (Eds.), Cultural studies and environmentalism: The confluence of ecojustice, place-based (science) education, and indigenous knowledge systems (pp. 105--128). New York, NY: Springer.
  29. Partnership for the 21st Century Skills [P21]. (2009). A framework for 21st century learning. Washington, DC: P21.
  30. Paulus, P. B., & Nijstad, B. A. (2003). Group creativity. New York, NY: Oxford university press.
  31. Perkins, D. N., Farady, M., & Bushey, B. (1991). Everyday reasoning and the roots of intelligence. In J. F. Voss, D. N. Perkins, & J. W. Segal (Eds.), Informal reasoning and education (pp. 83-105). Hillsdale, NJ: Erlbaum.
  32. Ratcliffe, M. (1997). Pupil decision-making about socio-scientific issues within the science curriculum. International Journal of Science Education, 19(2), 167-182. https://doi.org/10.1080/0950069970190203
  33. Reis, P., & Galvao, C. (2004). The impact of socio-scientific controversies in Portuguese natural science teachers'' conceptions and practices. Research in Science Education, 34, 153-171. https://doi.org/10.1023/B:RISE.0000033760.04656.a1
  34. Roth, W. M. (2003). Scientific literacy as an emergent feature of collective human praxis. Journal of Curriculum Studies, 35(1), 9-23. https://doi.org/10.1080/00220270210134600
  35. Roth, W. M., & Desautels, J. (2004). Educating for citizenship: Reappraising the role of science education. Canadian Journal of Science, Mathematics and Technology Education, 4(2), 149-168. https://doi.org/10.1080/14926150409556603
  36. Roth, W. M., & Lee, S. (2004). Science education as/for participation in the community. Science Education, 88(2), 263-294. https://doi.org/10.1002/sce.10113
  37. Sadler, T. D., & Zeidler, D. L. (2004). The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas. Science Education, 88, 4-27. https://doi.org/10.1002/sce.10101
  38. Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42(1), 112-138. https://doi.org/10.1002/tea.20042
  39. Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37, 371-391. https://doi.org/10.1007/s11165-006-9030-9
  40. Salomon, G. (1996). Studying novel learning environments as patterns of change. In S. Vosniadou, E. De Corte, R. Glaser & H. Mandl (Eds.), International perspectives on the design of technology-supported learning environments (pp. 363-378). Mahwah, NJ: L. Erlbaum Associates.
  41. Seels, B. B., & Richey, R. C. (1994). Instructional technology: The definition and domains of the field. Washington, DC: Association for Educational Communications and Technology.
  42. Simonneaux, L. (2001). Role-play or debate to promote students' argumentation and justification on an issue in animal transgenesis. International Journal of Science Education, 23(9), 903- 927. https://doi.org/10.1080/09500690010016076
  43. Surowiecki, J. (2004). The wisdom of crowds: Why the many are smarter than the few and how collective wisdom shapes business, economies, societies and nations. New York: Random House.
  44. Tal, R. T., & Hochberg, N. (2003). Reasoning, problem-solving and reflections: Participating in WISE project in Israel. Science Education International, 14, 3-19.
  45. Tal, R. T., & Kedmi, Y. (2006). Teaching socioscientific issues: Classroom culture and students' performances. Cultural Studies of Science Education, 1(4), 615-644.
  46. Tapscott, D., & Williams, A.D. (2006). Wikinomics: How mass collaboration changes everything. New York, NY: Portfolio.
  47. Treffinger, D., J., Solomon, M., & Woythal, D. (2012). Four decades of creative vision: Insights from an evaluation of the future problem solving program international (FPSPI). The Journal of Creative Behavior, 46(3), 209-219. https://doi.org/10.1002/jocb.14
  48. Tweney, R. D. (1991). Informal reasoning in science. In J. F. Voss, D. N. Perkins, & J. W. Segal (Eds.), Informal reasoning and education (pp. 3-16). Hillsdale, NJ: Erlbaum.
  49. Yang, M. (2011). Exploring the principles of collaborative learning for realization of collective intelligence. The Korean Journal of Educational Methodology Studies, 23(2), 457-483.
  50. Zeidler, D. L., & Kahn, S. (2014). It's debatable!: Using socioscientific issues to develop scientific literacy. Arlington, VA: NSTA press.
  51. Zeidler, D. L., & Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of Elementary Science Education, 21(2), 49-58. https://doi.org/10.1007/BF03173684
  52. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research based framework for socio-scientific issues education. Science Education, 89(3), 357-377. https://doi.org/10.1002/sce.20048
  53. Zohar, A., & Nemet, F. (2002). Fostering student's knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39, 35-62. https://doi.org/10.1002/tea.10008

Cited by

  1. Effects of Collective Intelligence-Based SSI Instruction on Promoting Middle School Students' Key Competencies as Citizens vol.35, pp.3, 2015, https://doi.org/10.14697/jkase.2015.35.3.0431
  2. The Suggestion of Design Thinking Process and its Feasibility Study for Fostering Group Creativity of Elementary-Secondary School Students in Science Education vol.35, pp.3, 2015, https://doi.org/10.14697/jkase.2015.35.3.0443
  3. Development of an Analytical Framework for Dialogic Argumentation in the Context of Socioscientific Issues: Based on Discourse Clusters and Schemes vol.35, pp.3, 2015, https://doi.org/10.14697/jkase.2015.35.3.0509
  4. Examining Elementary School Students' Awareness about Socio-scientific Issues and Solutions about Environmental Topics by Using Their Drawings vol.35, pp.1, 2016, https://doi.org/10.15267/keses.2016.35.1.111
  5. 과학기술 관련 사회쟁점 교육을 위한 교과교육학적 지식(SSI-PCK) 요소에 대한 탐색 vol.36, pp.4, 2016, https://doi.org/10.14697/jkase.2016.36.4.0539
  6. 합리적 문제해결을 저해하는 인지편향과 과학교육을 통한 탈인지편향 방법 탐색 vol.36, pp.6, 2014, https://doi.org/10.14697/jkase.2016.36.6.0935
  7. 디지털스토리텔링 활동 기반 과학관련 사회쟁점 수업의 교육적 효과에 대한 인식 탐색 vol.37, pp.1, 2017, https://doi.org/10.14697/jkase.2017.37.1.0181
  8. 과학관련 사회쟁점을 활용한 대학생 인성교육의 효과 -개인-집단중심성향에 따른 비교- vol.37, pp.3, 2017, https://doi.org/10.14697/jkase.2017.37.3.395
  9. 과학관련 사회쟁점(SSI) 토론 수업에서 스마트 기기의 활용 방식과 수업의 특징 vol.37, pp.5, 2014, https://doi.org/10.14697/jkase.2017.37.5.787
  10. 과학관련 사회쟁점(SSI) 수업의 소집단 토론과 전체 학급 토론에서 나타나는 특징 vol.38, pp.2, 2014, https://doi.org/10.14697/jkase.2018.38.2.135
  11. 협력적 문제해결 중심 교수모델에 기반 한 학생 인성 역량 평가 도구 개발 vol.38, pp.3, 2014, https://doi.org/10.14697/jkase.2018.38.3.419
  12. 플립러닝 기반 SSI 수업이 중학생의 과학기술 사회 시민으로서의 역량 및 인성 함양에 미치는 효과 vol.38, pp.4, 2014, https://doi.org/10.14697/jkase.2018.38.4.467
  13. The development and validation of the GI-ALE instructional model for the emerging collective intelligence of the scientifically gifted student vol.5, pp.1, 2014, https://doi.org/10.1186/s41029-019-0046-7
  14. 공과대학 학생을 위한 과학기술관련 사회·윤리 쟁점기반 수업이 인성과 가치관에 미치는 효과 탐색 vol.23, pp.3, 2020, https://doi.org/10.18108/jeer.2020.23.3.3
  15. Analysis of Argumentation Structure in Students' Writing on Socio-scientific issues (SSI): Focusing on the Unit of Climate Change in High School Earth Science I vol.41, pp.4, 2014, https://doi.org/10.5467/jkess.2020.41.4.405
  16. A study on the possibility of the relationship among group creativity, empathy, and scientific inquiry ability of elementary school students vol.42, pp.13, 2014, https://doi.org/10.1080/09500693.2020.1813347
  17. 과학교육과 지속가능발전교육 접목 프로그램이 고등학생의 세계관에 미치는 영향 vol.13, pp.3, 2020, https://doi.org/10.15523/jksese.2020.13.3.253