DOI QR코드

DOI QR Code

Using a Learning Progression to Characterize Korean Secondary Students' Knowledge and Submicroscopic Representations of the Particle Nature of Matter

Learning Progression을 적용한 중·고등학생의 '물질의 입자성'에 관한 지식과 미시적 표상에 대한 특성 분석

  • Received : 2014.05.23
  • Accepted : 2014.07.31
  • Published : 2014.08.30

Abstract

Learning progressions (LP), which describe how students may develop more sophisticated understanding over a defined period of time, can inform the design of instructional materials and assessment by providing a coherent, systematic measure of what can be regarded as "level appropriate." We developed LPs for the nature of matter for grades K-16. In order to empirically test Korean students, we revised one of the constructs and associated assessment items based on Korean National Science Standards. The assessment was administered to 124 Korean secondary students to measure their knowledge and submicroscopic representations, and to assign them to a level of learning progression for the particle nature of matter. We characterized the level of students' understanding and models of the particle nature of matter, and described how students interpret various representations of atoms and molecules to explain scientific phenomena. The results revealed that students have difficulties in understanding the relationship between the macroscopic and molecular levels of phenomena, even in high school science. Their difficulties may be attributed to a limited understanding of scientific modeling, a lack of understanding of the models used to represent the particle nature of matter, or limited understanding of the structure of matter. This work will inform assessment and curriculum materials development related to the fundamental relationship between macroscopic, observed phenomena and the behavior of atoms and molecules, and can be used to create individualized learning environments. In addition, the results contribute to scientific research literature on learning progressions on the nature of matter.

Learning Progressions(학습진행과정, 이하 LP)은 "과학의 핵심 아이디어(core idea) 혹은 과학 활동(scientific practices) 이해 과정을 상대적으로 단순한 체계에서 전문가의 지식체계로 논리적이고, 순차적인 단계로 정교하게 설명한 틀"로서, 한 교과 내 및 다른 과학영역들(물리, 지구과학, 생물, 화학)과 연결하여 연계적 교육과정을 구성하는 이론적 기반을 제공한다. 학습은 개개인의 선지식, 선경험, 교과교육과정, 교육과정 등의 여러 요소에 영향을 받는 복잡한 이해 과정으로, LP 단계를 모든 학생들이 동일하게 이동하지 않는다. 학생과 학습환경의 특성에 따른 이동 가능한 학습경로의 서술을 위해서는 다양한 학생데이터의 수집과 분석이 필요하다. 이러한 과정을 통해서 가설의 LP는 과학적으로 증명된 LP로 규명되며. 비로소 교과과정 개발의 틀(framework)로 역할을 할 수 있다. 본 연구는 미시간 대학 연구팀이 개발한 "물질의 본성(nature of matter)" 주요 개념에서, 하위개념인 "물질의 입자성(particule nature of matter)과 입자적 표상(submicroscophic representation)"의 LP와 관련 평가지를 우리나라 과학교육과정과 연계, 수정하여 개발하였다. 수정된 평가지와 LP는 124명의 중고등학생의 LP 경로 특성을 분석하는데 사용되었다. 학생들의 입자적 개념과 표상의 이해도, 개념과 표상 이해도 연관성을 중점으로 분석하여 관련 과학교육과정과 현장 수업의 문제점과 시사점을 도출하였다. 본 연구결과를 종합해 보면, 높은 레벨 문항의 정답을 고른 빈도수는 낮은 레벨 문항을 모두 정답으로 고른 경우에 높았으며 이는 학생들이 본 연구팀이 개발한 LP 경로로 이해과정을 정교화시킴을 알 수 있다. 하지만, 대부분의 학생들, 특히 고등학생들은 초등학교 수준의 거시적 물질의 본성 개념 LP 단계에 머물고 있으며, 중학교 수준인 미시적 표상 LP 단계에 있다. 입자적 개념과 표상 이해 실패의 주요 원인은 1) 과학적 모델의 본질, 2) 관련 선지식, 3) 미립자 표상의 이해부족으로 정리된다. 본 연구결과는 물질의 입자성과 관련된 개념, 과학활동(특히 모델링)을 증진시키고 개개인 특성에 맞는 맞춤형 학습환경 제공을 위한 학습, 교수, 평가자료 개발에 기여하는 바가 크다. 더 나아가 '물질의 본성'에 대한 LP연구와 과학적 소양 증진에 긍정적 역할을 할 것으로 기대한다.

Keywords

References

  1. Bamberger, Y. M., & Davis, E. A. (2013). Middle-school science students' scientific modelling performances across content areas and within a learning progression. International Journal of Science Education. 35(2), 213-238. https://doi.org/10.1080/09500693.2011.624133
  2. Chi, M. T., Slotta, J. D., & De Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4(1), 27-43. https://doi.org/10.1016/0959-4752(94)90017-5
  3. Choi, K., Lee, H., Shin, N., Kim, S. W., & Krajcik, J. (2011). Re-conceptualization of scientific literacy in South Korea for the 21st century. Journal of Research in Science Teaching, 48(6), 670-697. https://doi.org/10.1002/tea.20424
  4. Cobern, W. W., & Aikenhead, G. S. (1998). Cultural aspects of learning science. In B. Fraser & K. Tobin (Eds.), International handbook of science education part 1 (pp. 39-52). Dordrecht, Boston, London: Kluwer Academic Publishers.
  5. College Board (2009). Science college board standards for college sucess. New York, NY: The college board.
  6. Deboer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research Science Teaching, 37(6), 582-601. https://doi.org/10.1002/1098-2736(200008)37:6<582::AID-TEA5>3.0.CO;2-L
  7. Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75(6), 649-672. https://doi.org/10.1002/sce.3730750606
  8. Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155-170. https://doi.org/10.1207/s15516709cog0702_3
  9. Gilbert, J. (1993). Models & modelling in science education. Hatfield, UK: The Association for Science Education.
  10. Gilbert, J. K., Pietrocola, M., Zylbersztajn, A., & Faranco, C. (2000). Science and education: Notion of reality, theory and model, In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 19-40). Netherlands: Springer.
  11. Glynn, S. M. (1991). Explaining science concepts: A teaching-with-analogies model. In S. M. Glynn, R. H. Yeany, & B. K Britton (Eds.), The psychology of learning science. Hillsdale, NJ: Erlbaum.
  12. Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of molecules: Implication for teaching chemistry. Studies in Science Education, 80, 509-534.
  13. Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science Education, 84, 352-381. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<352::AID-SCE3>3.0.CO;2-J
  14. Harrison, A. G., & Treagust, D. F. (2002). The particulate nature of matter: Challenges in understanding the submicroscopoic world. In J. K. Gilbert, O. D. Jong, R. Justi, D. F. Treagust, & J. H. Van Driel, (Eds.), Chemical education: Towards research-based practice (pp. 189-212). Dordrecht, Netherlands: Kluwer Academic Publishers.
  15. Hodgson, T. (1995). Secondary mathematics modeling: Issues and challenges. School Science and Mathematics, 95, 351-358. https://doi.org/10.1111/j.1949-8594.1995.tb15799.x
  16. Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers' views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387. https://doi.org/10.1080/09500690110110142
  17. Kenyon, L., Schwarz, C., & Hug, B. (2008). The benefits of scientific modelling. Science and Children, 46(2), 40-44.
  18. Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The roles of representations and tools in the chemistry laboratory and their implications for chemistry learning. Journal of the Learning Sciences, 9(2), 105-143. https://doi.org/10.1207/s15327809jls0902_1
  19. Maeng, S. H., Seong, Y. S., & Jang, S. H. (2013). Present states methodological features and an exemplar study of the research on learning progressions. Journal of Korean Association for Science Education, 33(1), 161-180. https://doi.org/10.14697/jkase.2013.33.1.161
  20. Ministry of Education. (2011). The science curriculum of the republic of Korea 2009 revised version. Proclamation of the ministry of education, science and technology #2011-361.
  21. Mohan, L., Chen, J., & Anderson, C. W. (2009). Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching, 46(6), 675-698. https://doi.org/10.1002/tea.20314
  22. National Research Council. (1996). National science education standards. Washington, DC: The National Academy Press.
  23. National Research Council. (2005). How students learn: Science in the classroom. In M. S. Donovan & J. D. Bransford (Eds.), Committee on how people learn, a targeted report for teachers. Washington, DC: The National Academies Press.
  24. National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. In R. A. Duschl, H. A. Schweingruber, & A. W. Shouse (Eds.). Washington, DC: The National Academies Press.
  25. National Research Council. (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Committee on conceptual framework for the new K-12 science education standards. Washington, DC: The National Academies Press.
  26. National Research Council. (2013). Education for life and work: Developing transferable knowledge and skills in the 21st century. In Pellegrino, J. W., & Hilton, M. L. (Eds.). Washington, DC: The National Academies Press.
  27. NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.
  28. Noh, T,, Yoon, M., Kang, H., & Han, J. (2007). Semiotic analysis of the inscriptions representing concept of atom and molecule in the 9th grade science textbooks. Journal of the Korean Chemical Society, 51(5), 423-432. https://doi.org/10.5012/jkcs.2007.51.5.423
  29. Noh, T,, Yoon, M., & Han, J. (2009). Students' comprehension and interpretation process of inscriptions representing the concept of atom and molecule. Journal of the Korean Chemical Society, 53(3), 355-367. https://doi.org/10.5012/jkcs.2009.53.3.355
  30. Roth, W. M., & McGinn, M. K. (1998). Inscriptions: Toward a theory of representing as social practice. Review of Educational Research, 68(1), 35-59. https://doi.org/10.3102/00346543068001035
  31. Scalise, K., & Gifford, B. (2006). Computer-based assessment in e-learning: A framework for constructing "intermediate constraint" questions and tasks for technology platforms. The Journal of Technology, Learning, and Assessment, 4(6), 1-45.
  32. Schmidt, W. H., Wang, H. C., & McKnight, C. C. (2005). Curriculum coherence: An examination of US mathematics and science content standards from an international perspective. Journal of Curriculum Studies, 37(5), 525-559. https://doi.org/10.1080/0022027042000294682
  33. Smith, C. L., Wiser, M., Anderson, C. W., & Krajcik, J. S. (2006). Implications of research on children's learning for standards and assessment: A proposed learning progression for matter and the atomic molecular theory. Measurement: Interdisciplinary Research and Perspectives, 14(1-2), 1-98.
  34. Stevens, S. Y., Delgado, C., & Krajcik, J. S. (2010). Developing a theoretical learning progression for atomic structure and inter-atomic interactions. Journal of Research in Science Teaching. 47(6), 687-715.
  35. Stevens, S. Y., & Shin, N. (2010). An investigation into students' interpretations of submicroscopic representations. Poster presented at the International Conferences of the Learning Sciences, Chicago, IL, USA.
  36. Stevens, S. Y., Shin, N., & Krajcik, J. S. (2009a). Towards a model for the development of an empirically tested learning progression. Paper presented at the Learning Progressions in Science (LeaPS) Conference, Iowa City, IA, USA.
  37. Stevens, S.Y., Shin, N., & Peek-Brown, D. (2013). Learning progressions as a guide for developing meaningful science learning: A new framework for old ideas. Journal of Education Quimica, 24(4), 381-390.
  38. Stevens, S., Sutherland, L., & Krajcik, J. S. (2009b). The big ideas of nanoscale science and engineering. Arlington, VA: National Science Teachers Association Press.
  39. Schwarz, C., Reiser, B., Davis, E., Kenyon, L., Acher, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009a). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  40. Schwarz, C., Reiser, B., Fortus, D., Shwartz, Y., Acher, A., Davis, B., Krajcik, J., & Hug, B. (2009b). Models: Defining a learning progression for scientific modeling. Paper presented at the Learning Progression in Science (LeaPS) conference, Iowa City, IA, USA.
  41. Treagust, D. F., Chittleborough, G. D., & Mamiala, T. L. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353-1369. https://doi.org/10.1080/0950069032000070306
  42. Tuckey, H., & Selvaratnam, M. (1993). Studies involving three-dimensional visualisation skills in chemistry: A review. Studies in Science Education, 21(1), 99-121. https://doi.org/10.1080/03057269308560015
  43. Wu, H. K., & Puntambekar, S. (2012). Pedagogical affordances of multiple external representations in scientific processes. Journal of Science Education and Technology, 21(6), 754-767. https://doi.org/10.1007/s10956-011-9363-7

Cited by

  1. Exploring Levels of High School Students’ Conceptual Understanding andModeling Performance Regarding Cell Division vol.43, pp.3, 2014, https://doi.org/10.15717/bioedu.2015.43.3.261
  2. 과학과 교육과정의 연계성 국제 비교: 광합성 개념 중심으로 vol.35, pp.5, 2014, https://doi.org/10.14697/jkase.2015.35.5.0805
  3. 생태계에 대한 학습발달과정의 개발과 평가 vol.36, pp.1, 2016, https://doi.org/10.14697/jkase.2016.36.1.0029
  4. 초등학생의 지구의 운동과 태양계 학습 발달과정의 타당성 검증: 구인 타당도 및 결과 타당도를 중심으로 vol.36, pp.1, 2014, https://doi.org/10.14697/jkase.2016.36.1.0177
  5. 용해와 용액 개념에 대한 학습발달과정 조사 vol.36, pp.2, 2014, https://doi.org/10.14697/jkase.2016.36.2.0295
  6. 기초공통개념으로서 에너지에 대한 3~9학년 학생들의 문항 반응 분석 vol.36, pp.6, 2016, https://doi.org/10.14697/jkase.2016.36.6.0815
  7. 분산 인지의 관점에 따른 모델링 중심 초등 과학 수업의 해석 vol.36, pp.1, 2014, https://doi.org/10.15267/keses.2017.36.1.016
  8. 물질의 특성에 대한 중학생의 거시적 개념과 미시적 개념의 비교 vol.62, pp.3, 2018, https://doi.org/10.5012/jkcs.2018.62.3.243
  9. 반응적 교수법에 의한 고등학교 1학년 학생들의 질량 보존과 부피 변화에 대한 사고 변화 분석 vol.64, pp.5, 2014, https://doi.org/10.5012/jkcs.2020.64.5.304