DOI QR코드

DOI QR Code

RNA Interference of Chitinase Gene in Spodoptera litura

담배거세미나방(Spodoptera litura) Chitinase gene의 RNA interference

  • Jeon, Mi Jin (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Seo, Mi Ja (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Youn, Young Nam (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Yu, Yong Man (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
  • 전미진 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 서미자 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 윤영남 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 유용만 (충남대학교 농업생명과학대학 응용생물학과)
  • Received : 2014.09.01
  • Accepted : 2014.09.23
  • Published : 2014.09.30

Abstract

RNA interference (RNAi) is the method which controls phenotypes of gene in live cells. Chitinase is the enzyme helping digestion and absorption of old cuticles during the ecdysis of insects. In order to investigate molting-inhibition effect with the chitinase related gene in Spodoptera litura, RNA was extracted from the $5^{th}$ instars. cDNA was synthesized and then we obtained about 700 bp size chitinase. After PCR products were cloned into a pGEM T-easy vector, colonies were picked. DNA was extracted from the colony cultures. EcoR I enzyme was used to check whether PCR products were inserted or not. And then we confirmed vector band of about 3 kb and insert band of about 700 bp. To synthesize the dsRNA, each DNA was cut with Spe I and Nco I enzymes (Circular DNA became lineared DNA). After synthesis of dsRNA, approximately 5 ul dsRNA was injected into the $3^{rd}$ abdominal segment of S. litura $4^{th}$ larvae. The concentration of dsRNA was about $10{\mu}g/{\mu}l$. We confirmed larval-larval molting : there were phenotypically abnormal individuals - for instance malformation, molting inhibition and change of integument color. Pupaadult molting : there were phenotypically abnormal individuals - for instance molting inhibition, change of wings and malformation. Also we could investigate the pupation, emergence and variation about noninjection, treated with DW and dsRNA. Each pupation was non-injection 83.3%, DW 78.3% and dsRNA 66.7%. Each emergence was non-injection 90.0%, DW 72.3% and dsRNA 65.0%. So we considered that chitinase dsRNA induced molting inhibition effect. But each variation was non-injection 8.9%, DW 2.9% and dsRNA 19.2%. Therefore dsRNA group showed the highest variation value. When 18 hours after injecting dsRNA, we could obtain abnormal individual.

RNA interference(RNAi)는 살아있는 세포 내에서 유전자의 표현 형을 억제하는 작용을 하고 Chitinase는 곤충이 탈피를 하는 동안 오래된 큐티클의 분해와 재흡수를 도와주는 효소로 알려져 있다. 이러한 작용기작을 이용하는 연구를 수행하기 위하여 담배거세미나방의 chitinase와 관련하여 탈피저해 효과를 조사하였다. 담배거세미나방 5령 유충으로부터 RNA를 추출하고 이용하여 cDNA를 합성하고 약 700 bp의 chitinase를 증폭 하였다. 증폭한 PCR product를 pGEM T-easy vector에 cloning하여 competent cell (E.coli)에 형질전환 시키고 mixture를 배양 후 colony를 선발하고 plasmid DNA를 추출하였다. 그 결과 약 3 kb size의 vector band와 약 700 bp의 insert band를 확인 할 수 있었다. dsRNA를 합성하기 위해 각각의 DNA를 Spe I과 Nco I의 제한 효소 처리를 하여 linear form의 DNA로 만들었다. dsRNA 합성 후 약 $10{\mu}g/{\mu}l$의 농도로 $5{\mu}l$씩 담배거세미나방 4령 유충에 주입하였다. 그 결과 유충-유충간의 탈피에서는 기형발육, 탈피저해, 표피의 색소 변이가 나타났다. 번데기-성충 간의 탈피에서는 탈피저해, 날개변이, 기형발육 현상을 볼 수 있었다. 용화율의 경우 무처리구 83.3%, DW 처리구 78.3%, dsRNA 처리구 66.7%로 나타났다. 우화율의 경우 무처리구 90.0%, DW 처리구 72.3%, dsRNA 처리구 65.0%로 나타나 dsRNA를 처리한 그룹에서 상대적인 탈피 저해 효과를 확인할 수 있었다. 그러나 변이율의 경우 무처리구 8.9%, DW 처리구 2.9%, dsRNA 처리구 19.2%로 dsRNA를 주입한 처리구에서 변이율이 가장 높게 나타난 것을 확인할 수 있었다. 표현형적 변이는 dsRNA 주입 후 약 18 시간 이후부터 뚜렷하게 나타나는 것을 볼 수 있었다.

Keywords

References

  1. Arakane, Y., D. G. Hogenkamp, Y. C. Zhu, K. J. Kramer, Charles A. Specht, R. W. Beeman, M. R. Kanost and S. Muthukrishnan (2004) Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development, Insect Biochem. Mole. Biol. 34:291-304. https://doi.org/10.1016/j.ibmb.2003.11.004
  2. Bautista, M. A. M., T. Miyata, K. Miura and T. Tanaka (2009) RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamonback moth, Plutella xylostella, reduces larval resisitance to permethrin, Insect Biochem. Mole. Biol. 39:38-46. https://doi.org/10.1016/j.ibmb.2008.09.005
  3. Bettencourt, R., O. Terenius and I. Faye (2002) Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos, Insect Mole. Biol. 11:267-271. https://doi.org/10.1046/j.1365-2583.2002.00334.x
  4. Chen, X., H. Tian, L. Zou, B. Tang, J. Hu and W. Zhang (2008) Disruption of Spodoptera exigua larval development by silencing chtin synthase gene A with RNA interference, B. Entomol. Res. 98:613-619. https://doi.org/10.1017/S0007485308005932
  5. Coy, M. R., N. D. Sanscrainte, K. C. Chalaire, A. Inberg, I. Maayan, E. Glick, N. Paldi and J. J. Becnel (2012) Gene silecing in adult Aedes aegypti mosquitoes through oral delivery of double-stranded RNA, J. Appl. Entomol. 136 (10):741-748. https://doi.org/10.1111/j.1439-0418.2012.01713.x
  6. Fire, A. S., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver and C. C. Mello (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature 391:806-811. https://doi.org/10.1038/35888
  7. Garad, G. P., P. R. Shivpuje and G. G. Bilapate (1984) Life fecundity tables of Spodoptera litura (Fabricius) on different hosts, Indian Acad. Sci. 93(1):29-33. https://doi.org/10.1007/BF03186223
  8. Ghanim, M., S. Kontesedalov and H. Czosnek (2007) Tissuespecific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius), Insect Biochem. Mole. Biol. 37:732-738. https://doi.org/10.1016/j.ibmb.2007.04.006
  9. Goh, H. G., S. G. Lee, B. P. Lee, K. M. Choi and J. H. Kim (1990) Simple mass-rearing of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera Noctuidae), on an artificial diet, Kor. J. Appl. Entomol. 29:180-183.
  10. Henrissat B. (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities, J. Biochem. 280: 309-316. https://doi.org/10.1042/bj2800309
  11. Hwang, J. and Y. Kim (2011) RNA interference of an antimicrobial peptide, gloverin, of the beet armyworm, Spodoptera exigua, enhances susceptibility to Bacillus thuringiensis, J. Invert. Pathol. 108:194-200. https://doi.org/10.1016/j.jip.2011.09.003
  12. Jaubert-Possamai, S., G. L. Trionnaire, J. Bonhomme, G. K. Christophides, C. Rispe and D. Tagul (2007) Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum, BMC Biotechnol. 7:63-70. https://doi.org/10.1186/1472-6750-7-63
  13. Jung, S. Y., M. J. Seo, Y. N. Youn and Y. M. Yu (2010) Characteristics of $\delta$-Endotoxin Protein Produced from Bacillus thuringiensis subsp. kurstaki KB099 Isolate Showing High Bioactivity against Spodoptera litura, Kor. J. Pest. Sci. 14(4):446-455.
  14. Kim, D. A., J. S. Kim, M. R. Kil, S. K. Paek, S. Y. Choi, D. Y. Jin, Y. N. Youn, I. C. Hwang and Y. M. Yu (2008) Characterization of New Bacillus thuringiensis Isolated with Bioactivities to Tobacco Cutworm, Spodoptera litura (Lepidoptera: Noctuidae), Kor. J. Appl. Entomol. 47(1):87-93. https://doi.org/10.5656/KSAE.2008.47.1.087
  15. Kramer, K. J. and S. Muthukrishnan (1997) Insect Chitinases: Molecular Biology and Potential Use as Biopesticides, Insect Biochem. Mole. Biol. 27(11):887-900. https://doi.org/10.1016/S0965-1748(97)00078-7
  16. Niimi, T., H. Kuwayama and T. Yaginuma (2005) Larval RNAi Applied to the Analysis of Postembryonic Development to the Analsis of Postembryonic Development in the Ladybird Beetle, Harmonia axyridis, J. Insect Biotechnol. Seriool. 74:95-102.
  17. Quan, G., T. Ladd, J. Duan, F. Wen, D. Doucet, M. Cusson and P. J. Krell (2013) Characterization of a spruce budworm chitin deacetylase gene: Stage- and tissue -specific expression, and inhibition using RNA interference, Insect Biochem. Mole. Biol. 43(8):683-691. https://doi.org/10.1016/j.ibmb.2013.04.005
  18. Rajagopal, R., S. Sivakumar, N. Agrawal, P. Malhotra and R. K. Bhatnagar (2002) Silencing of midgut Aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor, J. Biol. Chem. 277(49):46849-46851. https://doi.org/10.1074/jbc.C200523200
  19. Rodriguez-Cabrera, L., D. Trujillo-Bacallao, O. Borras-Hidalgo, D. J. Wright and C. Ayra-Pardo (2010) RNAi-mediated knockdown of a Spodoptera frugiperda trypsin - like serine-protease gene reduces susceptibility to a Bacillus thuringiensis Cry1Ca1 protoxin, Environ. Microbiol. 12(11): 2894-2903. https://doi.org/10.1111/j.1462-2920.2010.02259.x
  20. Rong, S., D. Q. Li, X. Y. Zhang, S. Li, K. Y. Zhu, Y. P. Guo, E. B. Ma and J. Z. Zhang (2013) RNA interference to reveal roles of $\beta$-N-acetylglucosaminidase gene during molting process in Locusta migratoria, Insect Sci. 20:109-119. https://doi.org/10.1111/j.1744-7917.2012.01573.x
  21. Shinoda, T., J. Kobayashi, M. Matsui and Y. Chinzei (2001) Cloning and functional expression of a chitinase cDNA from the common cutworm, Spodoptera litura, using a recombinant baculovirus lacking the virus-encoded chitinase gene, Insect Biochem. Mole. Biol. 31:521-532. https://doi.org/10.1016/S0965-1748(00)00133-8
  22. Turner, C. T., M. W. Davy, R. M. MacDiarmid, K. M. Plummer, N. P. Birch and R. D. Newcomb (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding, Insect Mole. Biol. 15(3):383-391. https://doi.org/10.1111/j.1365-2583.2006.00656.x
  23. Zhang, D., J. Chen, Q. Yao, Z. Pan, J. Chen and W. Zhang (2012) Functional analysis of two chitinase genes during the pupation and eclosion stages of the beet armyworm Spodoptera exigua by RNA interference, Archie. Insect Biochem. Physiol. 79(4-5):220-234. https://doi.org/10.1002/arch.21018
  24. Zhou, X., M. M. Wheeler, F. M. Oi and M. E. Scharf (2008) RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA, Insect Biochem. Mole. Biol. 38:805-815. https://doi.org/10.1016/j.ibmb.2008.05.005

Cited by

  1. 꿀벌에 대한 dsRNA의 급성섭식독성 평가 vol.36, pp.4, 2014, https://doi.org/10.5338/kjea.2017.36.4.36