DOI QR코드

DOI QR Code

SHRIMP U-Pb Zircon Geochronology of the Guryong Group in Odesan Area, East Gyeonggi Massif, Korea: A new identification of Late Paleozoic Strata and Its Tectonic Implication

경기육괴 동부 오대산 지역의 구룡층군에 대한 SHRIMP U-Pb 저어콘 연대측정: 새로운 후기 고생대층의 인지와 지체구조적 의의

  • Cho, Deung-Lyong (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 조등룡 (한국지질자원연구원 국토지질연구본부)
  • Received : 2014.07.04
  • Accepted : 2014.09.04
  • Published : 2014.09.30

Abstract

Zircon separated from a biotite schist of the Guryong Group in Odesan area, eastern part of the Gyeonggi Massif in Korea were analysed for SHRIMP U-Pb ages. CL images display composite core-rim structures of the zircon, indicating an in-situ overgrowth of zircon through a high-grade metamorphism. The metamorphic zircon rims give a weighted mean age of $247{\pm}6Ma$. While the detrital zircon cores have zoning patterns and Th/U ratios indicative of a magmatic origin. Among 53 analyses from the cores, 46 data yield near concordant ages which are concentrated at $378{\pm}10Ma$ (n=9), $420{\pm}4Ma$ (n=6) and $1845{\pm}9Ma$ (n=18) with sporadic Neoproterozoic ($687{\pm}9Ma$) to late Archean ($2519{\pm}20Ma$) ages. The age data constraint sedimentation age of protolith of the Guryong Group, so far unknown, as late Paleozoic. The Guryong Group of this study is the first late Paleozoic strata reported from eastern Gyeonggi Massif, and its maximum depositional age (ca 378 Ma) is identical with those of the late Paleozoic strata in the southwestern Ogcheon Belt. The Triassic metamorphic age and abundant middle Paleozoic provenance (361~425 Ma) of the Guryong Group are similar with those reported from the Triassic collisional belt in central China. Thus this study indicates that the Odesan area would be an possible eastward extension of the Triassic collisional belt in central China.

경기육괴 동부 오대산 지역의 구룡층군 흑운모 편암에 대한 SHRIMP U-Pb 저어콘 연대를 측정하였다. CL 영상에서 저어콘은 변성작용에 의해 원위치에서 성장한 가중평균연령 $247{\pm}6Ma$의 저어콘 외연부를 갖는다. 쇄설성 저어콘 핵은 대부분 마그마기원을 지시하는 누대구조와 Th/U 비를 보이고, 53점의 분석치에서 46점이 일치연령에 가까운 자료에 해당한다. 이들은 가중평균 $378{\pm}10Ma$(n=9), $420{\pm}4Ma$(n=6)와 $1845{\pm}9Ma$ (n=18)의 집중군과 신원생대에서 시생대 최후기에 걸친 $687{\pm}9Ma$에서 $2519{\pm}20Ma$의 산발적인 연령을 보인다. 이 연구의 연대자료는 지금까지 시대미상이었던 구룡층군이 경기육괴 동부에서 최초로 보고되는 고생대 후기 지층으로서 최고 퇴적시기가 옥천대 남서부의 퇴적층에 대비될 수 있음을 나타낸다. 또한 이 연구에서 제시하는 중국 중앙부 충돌대의 경우와 같은 구룡층군의 트라이아스기의 변성시기와 고생대 중기(361~425 Ma)의 쇄설성 저어콘 연대는 오대산 지역이 중국 충돌대의 영향을 받은 지역 혹은 그의 연장부에 해당할 가능성을 시사한다.

Keywords

References

  1. Chang, E.Z., 1996, Collisional orogen between north and south China and its eastern extension in Korean Peninsula. Journal of Southeast Asian Earth Science, 13, 267-277. https://doi.org/10.1016/0743-9547(96)00033-5
  2. Cho, D.-L., 2004, Mineral separation and sample preparation methods efficient for subgrain zircon analyses. Journal of the Petrological Society of Korea, 13, 126-132 (in Korean with English abstarct).
  3. Cho, D.-L., 2007, SHRIMP zircon dating of a low-grade meta-sandstone from the Taean Formation: Provenance and its tectonic implications. KIGAM Bulletin, 11, 3-14 (in Korean with English abstract).
  4. Cho, D.L., Kwon, S.T., Jeon, E.Y. and Armstrong, R., 2001, SHRIMP U-Pb zircon geochronology of an amphibolite and a paragneiss from the Samgot unit, Yeoncheon Complex in the Imjingang belt, Korea: tectonic implication. Geological Society of Korea Annual Meeting Abstract 14-1, 89.
  5. Cho, D.-L., Kwon, S.-T., Jeon, E.-Y. and Armstrong, R., 2005, SHRIMP U-Pb zircon ages of metamorphic rocks from the Samgot unit, Yeoncheon complex in the Imjingang belt, Korea: Implications for the Phanerozoic tectonics of East Asia (abstract). Annual Meeting of the Geological Society of America, paper no. 171-6. doi: 0020-6814/07/912/30-22.
  6. Cho, D.-L., Suzuki, K., Adachi, M. and Chwae, U., 1996, A preliminary CHIME age determination of monazite from metamorphic and granitic rocks in the Gyeonggi massif, Korea. Journal of Earth and Planetary Science, Nagoya University, 43, 49-65.
  7. Cho, M., Cheong, W., Ernst, W.G., Yi, K. and Kim, J., 2013, SHRIMP U-Pb ages of detrital zircons in metasedimentary rocks of the central Ogcheon fold-thrust belt, Korea: Evidence for tectonic assembly of Paleozoic sedimentary protoliths. Journal of Asian Earth Sciences, 63, 234-249. https://doi.org/10.1016/j.jseaes.2012.08.020
  8. Cho, M., Kim, Y. and Ahn, J., 2007, Metamorphic evolution of the Imjingang belt, Korea: implications for Permo- Triassic collisional orogeny. International Geology Review, 49, 30-51. https://doi.org/10.2747/0020-6814.49.1.30
  9. Cho, M., Na, J. and Yi, K., 2010, SHRIMP U-Pb ages of detrital zircons in metasandstones of the Taean Formation, western Gyeonggi massif, Korea: Tectonic implications. Geosciences Journal, 14, 99-109. https://doi.org/10.1007/s12303-010-0011-7
  10. Chough, S.K., Kwon, S.T., Ree, J.H. and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth Science Review, 52, 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  11. Dong, Y., Zhang, G., Neubauer, F., Liu, X., Genser, J. and Hauzenberger, C., 2011, Tectonics evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41, 23-237.
  12. Ernst, W.G. and Liou, J.G., 1995, Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belt. Geology, 23, 353-356. https://doi.org/10.1130/0091-7613(1995)023<0353:CPTSOT>2.3.CO;2
  13. Hacker, B.R., Ratschbacher, L. and Liou, J.G., 2004, Subduction, collision and exhumation in the ultrahigh-pressure Qunling-Dabie orogen. In Aspects of the Tectonic Evolution of China, (eds. Malpas, J., Fletcher, C.J.N., Ali, J.R. and Aitchison, J.C.), The geological society publishing house, Brassmill Lane, 157-175.
  14. Hoskin, P.W.O. and Schaltegger, U., 2003, The composition of zircon and igneous and metamorphic petrogenesis. In Zircon (eds. Hanchar J.M. and Hoskin, P.O.W), Reviews in Mineralogy and Geochemistry, 53, 27-62. https://doi.org/10.2113/0530027
  15. Kee, W.-S., Kim, H., Kim, B.C., Choi, S.J., Park, S.-I. and Hwang S.K., 2010, Geological report of the Seoraksan sheet, scale 1:50,000. Korea Institute of Geoscience and Mineral Resorces, 94p (in Korean with English summary).
  16. Kim, B.K., Chi, J.M., Lee D.Y. and So, C.-S., 1975a, Explanatory text of the geological map of Hyeon Ri sheet, sheet 6827-I, scale 1:50,000. Geological and Mineral Institute of Korea, 1-7 (English summary).
  17. Kim, S.W., Kee, W.-S., Lee, S.R., Santosh, M. and Kwon, S., 2013a, Neoproterozoic plutonic rocks from the western Gyeonggi massif, South Korea: Implications for the amalgamation and break-up of the Rodinia supercontinent. Precambrian Research, 227, 349-367. https://doi.org/10.1016/j.precamres.2012.01.014
  18. Kim, S.W., Kwon, S., Santosh, M., Cho, D.-L. and Ryu, IC., 2014, Detrital zircon U-Pb geochronology and tectonic implications of the Paleozoic sequences in western South Korea, Journal of Asian Earth Sciences, doi: http://dx.doi.org/10.1016/j.jseaes.2014.05.022.
  19. Kim, S.W., Kwon, S., Santosh, M., Williams, I.S. and Yi, K., 2011a, A Paleozoic subduction complex in Korea: SHRIMP zircon U-Pb ages and tectonic implications. Gondwana Research, 20, 890-903. https://doi.org/10.1016/j.gr.2011.05.004
  20. Kim, S.W., Kwon, S., Yi, K. and Santosh, M., 2013b, Arc magmatism in the Yeongnam Massif, Korean Peninsula: Imprints of Columbia and Rodinia supercontinents. Gondwana Research, doi: 10.1016/j.gr.2013.08.020.
  21. Kim, S.W., Park, B.K., Kim, O.J., Yoo B.H. and Kim, K.H, 1975b, Explanatory text of the geological map of Bugbunri sheet, sheet 6927-IV, scale 1:50,000. Geological and Mineral Institute of Korea, 1-5 (English summary).
  22. Kim, T., Oh C.W. and Kim J., 2011b, The characteristic of mangerite and gabbro in the Odaesan area and its meaning to the Triassic tectonics of Korean peninsula Journal of the Petrological Society of Korea, 20, 77-98 (in Korean with English abstarct). https://doi.org/10.7854/JPSK.2011.20.2.077
  23. Kwon, S., Sajeev, K., Mitra, G., Park, Y., Kim, S.W. and Ryu, I.C., 2009, Evidence of Permo-Triassic collision in Far East Asia: the Korean collision orogen. Earth and Planetary Science Letter, 279, 340-349. https://doi.org/10.1016/j.epsl.2009.01.016
  24. Kwon, Y.W., Kim H.S. and Oh C.W., 1997, Polymetamorphism of the Odesan gneiss complex in the northeastern area of the Kyonggi massif, Korea. Journal of the Petrological Society of Korea, 6, 226-243 (in Korean with English abstract).
  25. Lee, S.R., Cho, M., Yi, K. and Stern R.A., 2000, Early Proterozoic granulites in central Korea: Tectonic correlation with Chinese cratons. Journal of Geology, 108, 729-738. https://doi.org/10.1086/317951
  26. Lee D.S., Yun, S. and Kim, J.J., 1975, Explanatory text of the geological map of Changchon sheet, sheet 6827 II, scale 1:50,000. Geological and Mineral Institute of Korea, 1-10 (English summary).
  27. Lim, S.-B., Chun, H.-Y., Kim, Y.B., Kim, B.K. and Cho, D.-L., 2005. Geologic ages, stratigraphy and geological structures of the metasedimentary strata in Bibong-Yeonmu area, NW Okcheon belt, Korea. Journal of the Geological Society of Korea, 41, 335-368 (In Korean with English abstract).
  28. Ludwig, K.R., 2008, Isoplot 3.6. A user's manual. Berkley Geochronology Center Special Publication 4, 2455 Ridge Road, Berkely, CA 94709, USA, 78p.
  29. Ludwig, K.R., 2009, SQUID 2.50. A user's manual. Berkley Geochronology Center, 2455 Ridge Road, Berkely, CA 94709, USA, 102p.
  30. Na, J., Kim, Y., Cho, M. and Yi, K., 2012, SHRIMP U-Pb ages of detrital zircons from metasedimentary rocks in the Yeongheung-Seonjae-Daebu Islands, Northwestern Gyeonggi Massif. Journal of the Petrological Society of Korea, 21, 31-45 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2012.21.1.031
  31. Oh C.W., 2012, The tectonic evolution of South Korea and northeast asia from Paleoproterozoic to Triassic. Journal of the Petrological Society of Korea, 21, 59-87 (in Korean with English abstarct). https://doi.org/10.7854/JPSK.2012.21.2.059
  32. Oh, C.W, Choi, S.G., Zhai, M. and Guo, J., 2003, The first finding of eclogite relict in the Korean Peninsula and its tectonic meaning. Abstract volume of The West Norway Eclogite Field Symposium, 107.
  33. Oh, C.W., Kim, C.B., Park, Y.S. and Kim, S.W., 2006a, SHRIMP U-Pb zircon ages of Paleoproterozpoc rocks from the Gyeonggi Massif and their implications. Journal of the Geological Society of Korea, 42, 587-606.
  34. Oh, C.W., Kim, S.W., Choi, S.G., Zhai, M., Guo, J. and Sajeev, K., 2005, First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu collision belt in China. Journal of Geology, 113, 226-232. https://doi.org/10.1086/427671
  35. Oh, C.W., Kim, S.W. and Williams, I.S., 2006b, Spinel granulite in Odesan area, South Korea: Tectonic implications for the collision between the North and South China blocks. Lithos, 92, 557-575. https://doi.org/10.1016/j.lithos.2006.03.051
  36. Oh, C.W., Krishnan, S., Kim, S.W. and Kwon, Y.W., 2006c, Mangerite magmatism associated with a probable Late- Permian to Triassic Hongseong-Odesan collision belt in South Korea. Gondwana Research, 9, 95-105. https://doi.org/10.1016/j.gr.2005.06.005
  37. Oh, C.W. and Kusky, T.M., 2007, The Late Permian to Triassic Hongseong-Odesan collision belt in South Korea, and its tectonic correlation with China and Japan. International Geology Review, 49, 639-657.
  38. Paces, J.B. and Miller Jr., J.D., 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research-Solid Earth, 98, 13997-14013. https://doi.org/10.1029/93JB01159
  39. Park, S.-I., Kim, S.W., Kwon, S., Thanh, N.X., Yi, K. and Santosh, M., 2014, Paleozoic tectonics of the southwestern Gyeonggi massif, South Korea: Insight from geochemistry, chromian-spinel chemistry and SHRIMP UPb geochronology. Gondwana Research, http://dx.doi.org/10.1016/j.gr.2013.07.015.
  40. Ree, J.H., Cho, M., Kwon, S.T. and Nakamura, E., 1996, Possible eastward extension of Chinese collision belt in South Korea: the Imjingang belt. Geology, 24, 1071-1074. https://doi.org/10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
  41. Ree, J.H., Kwon, S.H., Park, Y., Kwon, S.T. and Park, S.H., 2001, Pre- and post-tectonic emplacements of the granitoids in the central-southern Okchon belt, South Korea: implications for the timing of the strike-slip shearing and thrusting. Tectonics, 20, 850-867. https://doi.org/10.1029/2000TC001267
  42. Sajeev, K., Jeong, J., Kwon, S., Kee, W.S., Kim, S.W., Komiya, T., Itaya, T., Jung, H.S. and Park, Y., 2010, High P-T granulite relicts from the Imjingang belt, South Korea: Tectonic significance. Gondwana Research, 17, 75-86. https://doi.org/10.1016/j.gr.2009.07.001
  43. Song, K.-Y., Park S.-I. and Cho, D.-L., 2011, Geological report of the Sokcho-Yangyang sheet, scale 1:50,000. Korea Institute of Geoscience and Mineral Resources, 81p (in Korean with English summary).
  44. Vavra, G., 1990, On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study. Contributions to Mineralogy and Petrology, 106, 90-99. https://doi.org/10.1007/BF00306410
  45. Williams, I.S., 1998, U-Th-Pb geochronology by ion microprobe. In Application of Microanalytical Techniques to Understanding Mineralizing Processes (eds. Mckibben, M.A., Shanks III, W.C. and Ridley W.I.), Reviews in Economic Geology, 1-35.
  46. Wu, Y.B. and Zheng, Y.F., 2013, Tectonic evolution of a composite collision orogen: An overview on the Qinling- Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China. Gondwana Research, 23, 1402-1428. https://doi.org/10.1016/j.gr.2012.09.007
  47. Yin, A. and Nie. S., 1993, An indentation model for the north and south China collision and the development of the TanLu and Honam fault systems, eastern Asia. Tectonics, 12, 801-813. https://doi.org/10.1029/93TC00313
  48. Zhang, K.J., 1997, North and South China collision along the eastern and southern North China margins. Tectonophysics, 270, 145-156. https://doi.org/10.1016/S0040-1951(96)00208-9

Cited by

  1. LA-MC-ICPMS U-Pb Ages of the Detrital Zircons from the Baengnyeong Group: Implications of the Dominance of the Mesoproterozoic Zircons vol.49, pp.6, 2016, https://doi.org/10.9719/EEG.2016.49.6.433
  2. 2014, Application of Geochronological and Isotopic Data vol.23, pp.3, 2014, https://doi.org/10.7854/JPSK.2014.23.3.163
  3. Detrital zircon ages in Korean mid-Paleozoic meta-sandstones (Imjingang Belt and Taean Formation): Constraints on tectonic and depositional setting, source regions and possible affinity with Chinese terranes vol.143, 2017, https://doi.org/10.1016/j.jseaes.2017.04.028
  4. The metamorphic evolution from ultrahigh-temperature to amphibolite facies metamorphism in the Odaesan area after the collision between the North and South China Cratons in the Korean Peninsula vol.256-257, 2016, https://doi.org/10.1016/j.lithos.2016.03.019
  5. Geology of the 2018 Winter Olympic site, Pyeongchang, Korea vol.60, pp.3, 2018, https://doi.org/10.1080/00206814.2017.1340196
  6. Magmatic response to the interplay of collisional and accretionary orogenies in the Korean Peninsula: Geochronological, geochemical, and O-Hf isotopic perspectives from Triassic plutons vol.131, pp.3-4, 2019, https://doi.org/10.1130/B32021.1