DOI QR코드

DOI QR Code

The tectonic evolution of South Korea and Northeast Asia from Paleoproterozoic to Triassic

원생대 이후 트라이아스기까지의 남한과 동북아시아의 지구조 진화

  • Oh, Chang-Whan (Department of Earth and Environmental Sciences and The Earth and Environmental Science System Research Center, Chonbuk National University)
  • 오창환 (전북대학교 지구환경과학과, 전북대 지구환경시스템 연구소)
  • Received : 2012.04.14
  • Accepted : 2012.05.04
  • Published : 2012.06.30

Abstract

Recent studies reveal that eclogite formed in the Hongseong area and post collision igneous rocks occurred throughout the Gyeonggi Massif during the Triassic Songrim Orogeny. These new findings derive the tectonic model in which the Triassic Qinling-Dabie-Sulu collision belt between the North and South China blocks extends into the Hongseong-Yangpyeong-Odesan collision belt in Korea. The belt may be further extended into the late Paleozoic subduction complex in the Yanji belt in North Korea through the Paleozoic subduction complex in the inner part of SW Japan. The collision belt divides the Gyeonggi Massif into two parts; the northern and southern parts can be correlated to the North and South China blocks, respectively. The collision had started from Korea at ca. 250 Ma and propagated to China. The collision completed during late Triassic. The metamorphic conditions systematically change along the collision belt:. ultrahigh temperature metamorphism occurred in the Odesan area at 245-230Ma, high-pressure metamorphism in the Hongseong area at 230 Ma and ultra high-pressure metamorphism in the Dabie and Sulu belts. This systematic change may be due to the increase in the depth of slab break-off towards west, which might be related to the increase of the amounts of subducted ocecnic slab towards west. The wide distribution of Permo-Triassic arc-related granitoids in the Yeongnam Massif and in the southern part of the South China block indicate the Permo-Triassic subduction along the southern boundary of the South China block which may be caused by the Permo-Triassic collision between the North and South China blocks. These studies suggest that the Songrim orogeny constructed the Korean Peninsula by continent collision and caused the subduction along the southern margin of the Yeongnam Massif. Both the northern and southern Gyeonggi Massifs had undergone 1870-1840 Ma igneous and metamorphic activities due to continent collision and subduction related to the amalgamation of Colombia Supercontinent. The Okcheon metamorphic belt can be correlated to the Nanhua rift formed at 760 Ma within the South China blocks. In that case, the southern Gyeonggi Massif and Yeongnam Massif can be correlated to the Yangtz and Cathaysia blocks in the South China block, respectively. Recently possible Devonian or late Paleozoic sediments are recognized within the Gyeonggi Massif by finding of Silurian and Devonian detrital zircons. Together with the Devonian metamorphism in the Hongseong and Kwangcheon areas, the possible middle Paleozoic sediments indicate an active tectonic activity within the Gyeonggi Massif during middle Paleozoic before the Permo-Triassic collision.

최근 송림 조산운동시기인 트라이아스기에 홍성 지역의 에클로자이트와 경기육괴 내에 광범위하게 나타나는 충돌 후 화성암이 형성되었음이 확인되었다. 이러한 새로운 발견에 의해 1980년대 말에 확인된 남중국판과 북중국판의 충돌대인 트라이아스기 친링-다비-수루 충돌대가 한반도의 홍성 지역으로 연결된 후 양평 지역을 거쳐 오대산 지역으로 연결되는 모델이 제시되었다. 그 이후 충돌대는 일본 서남부의 고생대 섭입 복합체와 북한의 고생대 섭입 복합체인 연변대로 연결될 가능성이 높다. 이럴 경우 경기육괴는 홍성-양평-오대산 충돌대를 경계로 나뉘어져야하며 충돌대 북부는 북중국판에 남부는 남중국판에 대비될 것이다. 남중국판과 북중국판의 충돌은 페름기에 한반도로부터 시작하여 중국 쪽으로 진행되었으며 트라이아스기 말에 충돌이 완료되었다. 다비-수루-홍성-양평-오대산 충돌대를 따라 동측에서 서측으로 변성조건이 체계적으로 변화한다. 가장 동측에 해당하는 오대산 지역에서는 245-230 Ma 초고온 변성작용이 한반도의 서측에 해당하는 홍성지역에서는 230Ma 고압변성작용이 그리고 중국의 수루, 다비 지역에서는 220Ma의 초고압 변성작용이 일어났다. 충돌대를 따라 나타나는 체계적인 변성조건의 변화는 충돌 전 섭입된 해양지각의 양이 동측에서 서측으로 증가하여 섭입하던 대륙판과 해양판의 분리되는 깊이가 동측에서 서측으로 점차 증가하였기 때문인 것으로 생각된다. 한반도 남부 영남육괴와 남중국판 남부에 광범위하게 나타나는 페름기-트라이아스기 섭입관련 화성암은 북중국판과 남중국판의 페름기-트라이아스기 충돌이 남중국판 남쪽 경계부에서의 섭입작용을 시작시켰을 가능성이 있음을 지시한다. 즉 한반도의 송림 조산운동 시기에는 경기육괴지역에서 대륙충돌이 일어나 한반도가 형성되었으며 동시에 대륙충돌에 의해 영남육괴 남측에 섭입대를 형성되었을 것으로 예상된다. 홍성-양평-오대산 충돌대를 경계로 하여 경기육괴 북부와 남부는 모두 콜롬비아 초대륙 형성 후기인 1870-1840 Ma에 대륙충돌이나 섭입 작용에 의해 화성 및 변성작용을 강하게 받았다. 옥천 변성대는 중국 남중국판 내에 나타나는 760Ma 경에 형성된 난후아 열곡대에 대비될 수 있으며 그럴 경우 경기육괴 남부와 영남육괴는 각각 남중국판의 북부 양쯔판과 남부 커테시아판에 대비된다. 최근 경기육괴 변성퇴적암, 옥천변성대 등에서 광역적으로 발견되는 실루리아기-데본기의 쇄설성 저어콘은 경기육괴 내에 데본기 혹은 그 이후 고생대 시기의 퇴적암이 존재할 가능성을 제시하고 있으며 홍성과 광천 지역에서 확인된 데본기의 변성작용과 함께 페름기-트라이아스기의 대륙충돌 이전인 고생대 중기에도 경기육괴에 활발한 지구조 운동이 일어났음을 지시한다.

Keywords

References

  1. 고희재, 이병주, 이승렬, 2004, 한국지질도(1:50,000), 고양 도폭 및 설명서, 한국지질자원연구원, 71p.
  2. 김용준, 조등룡, 이창신, 1998, 한반도 남서부 남원 일대에 분포하는 A형 대강 화강암의 암석학, 지화학 및 지구조적 의미. 자원환경지질학회지, 31, 399-413.
  3. 김종선, 조형성, 안성호, 송철우, 손문, 김인수, 2010, 한반도 남부 하동-산청 회장암과 암맥군의 연령과 지구조적 의미. 한국광물학회 공동학술 발표회 논문집, 29.
  4. 김태성, 2011, 경기육괴 동부 오대산 일대의 화성작용 및 변성작용과 관련된 한반도내 트라이아스기 대륙충돌. 전북대학교 석사학위논문, 154p.
  5. 김태성, 오창환, 김정민, 2011, 오대산 지역에 나타나는 맨거라이트와 반려암의 특징과 트라이아스기 한반도 지체 구조 해석에 대한 의미. 암석학회지, 20, 77-78.
  6. 기원서, 김현철, 2011, 한국지질도(1:50,000), 설악산도폭 및 설명서, 한국지질자원연구원, 30p.
  7. 대한지질학회, 1998, 한국의 지질, 시그마프레스, 802p.
  8. 박계헌, 정창식, 1993, 선캠브리아기 경기육괴 중 대리암의 연대측정에 대한 예비연구. 암석학회지, 2, 130-138.
  9. 박계헌, 이태호, 이기욱, 2011, 옥천변성대 대향산규암층 쇄설성 저어콘의 SHRIMP U-Pb 연령. 지질학회지, 47, 423-431.
  10. 박영록, 2009, 춘천 후동리 일대에 분포하는 중기 트라이 아이스기 관입암의 부화된지화학 및 Sr-Nd 동위원소 특성: 부화된 맨틀로부터 기원. 암석학회지, 18, 255-267.
  11. 박중권, 이한영, 2003, 홍천 철-희토류 광상 모암의 암석화학. 암석학회지, 12, 135-153.
  12. 오창환, 전은영, 박배영, 안건상, 이정후, 2000, 소백산 육괴 서남부인 승주-순천 일대의 화강암질 편마암과 반상변정질 편마암의 변성진화과정. 암석학회지, 9, 121-141.
  13. 오창환, 김정빈, 박영석, 김성원, 2006, 경기육괴 고원생대 암류들에 대한 SHRIMP U-Pb 저어콘 연대와 그 의의. 지질학회지, 4, 587-606.
  14. 이병춘, 오창환, Yengkhom K.S., 이기욱, 2011, 경기육괴 의암층군에 나타나는 화성기원 변성암의 SHRIMP 연령 및 지구조적 의미. 추계지질과학연합 학술 발표회 초록 집, 1.
  15. 이승열, 2010, 경기육괴 중앙부 양평일대의 대륙충돌과 관련된 화성작용과 변성작용. 전북대학교 박사 학위논문, 221p.
  16. 이태호, 박계헌, 양윤석, 조경오, 김명정, 2010, 경상분지 하부지층들의 SHRIMP U-Pb 저콘 연령분포. 한국암석학회, 한국광물학회 공동학술 발표회 논문집, 14.
  17. 이호선, 2010, 중부 영남육괴에서의 삼첩기 초기부터 쥬라기 초기까지의 화성활동과 변성사건 및 조구조적 의미. 부경대학교 박사 학위논문, 267p.
  18. 임순복, 전희영, 김유봉, 김복철, 송교영, 2006, 서북옥천대 진산-복수 지역 변성퇴적암층의 층서와 지질시대. 지질학회지, 42, 149-174.
  19. 임순복, 전희영, 김유봉, 김복철, 조등룡, 2005, 서북옥천대 비봉-연무 지역 변성퇴적암층의 지질시대, 층서 및 지질구조. 41, 335-368.
  20. 조등룡, 2010, 경기육괴 구룡층군 SHRIMP U-Pb 저어콘 연대: 임진강대 연천층군과의 대비와 지체구조적 의의. 한국암석학회 한국광물학회 공동학술발표회 논문집, 33.
  21. 조등룡과 김용준, 2003, 경기육괴 포천 지역의 흑운모편마암과 우백질 화강암맥에 대한 SHRIMP U-Pb 저어콘 연대측정: 광역변성작용 연령 및 퇴적시기 제한. 대한지질학회 제58차 정기총회 및 학술발표회 초록집, 76.
  22. 정연중, 이기욱, Kamo, S.L., 정창식, 2008, 경기육괴 동부 맨거라이트에 대한 저어콘 단일 입자 열이온화질량분석법 연대측정. 지질학회지, 44, 425-433.
  23. Ames, L., Zhou, G. and Xiong, B., 1996, Geochronology and isotopic character of ultrahigh-pressure metamorphism with implication for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics 15, 472-489. https://doi.org/10.1029/95TC02552
  24. Arakawa, Y., Saito, Y. and Amakawa, H., 2000, Crustal development of the Hida belt, Japan: evidence from Nd-Sr isotopic and chemical characteristics of igneous and metamorphic rocks. Tectonophysics, 328, 183-204. https://doi.org/10.1016/S0040-1951(00)00183-9
  25. Arakawa, Y., Kouta, T. and Kanda, Y., 2001, Geochemical characteristics of amphibolites in the Oki metamorphic rocks, Oki-Dogo Island, southwestern Japan: mixed occurrence of amphibolites with different geochemical affinity. J. Mineral. Petrol. Sci. 96, 175-187. https://doi.org/10.2465/jmps.96.175
  26. Chen, J.F., Xie, A., Li, H.M., Zhang, X.D., Zhou, T.X., Park, Y.S., Ahn, K.S., Chen, D.G. and Zhang, X., 2003. U-Pb zircon ages for a collision-related K-rich complex at Shidao in theSulu ultrahigh pressure terrane, China. Geochemical Journal 37, 35-46. https://doi.org/10.2343/geochemj.37.35
  27. Chinese Academy of Geological Sciences, 2001, Geological Atlas of China. Geological Publishing House, Beijing, 348.
  28. Cho, D.L., Lee S.R. and Armstrong, R., 2008, Termination of the Permo-Triassic Songrim (Indosinian) orogeny in the Ogcheon belt, South Korea: Occurrence of ca. 220 Ma post-orogenic alkali granites and their tectonic implications. Lithos, 5, 191-200.
  29. Cho, K.H., Takagi, H. and Suzuki, K., 1999, CHIME monzonite age of granitic rocks in the Sunchang shear zone, Korea: timing of dextral ductile hsear: Geosciences Journal, 3, 1-15. https://doi.org/10.1007/BF02910229
  30. Cho, M., Kim, Y. and Ahn, J., 2007, Metamorphic evolution of the Imjingang belt, Korea: implications for Permo-Triassic collisional orogeny. International Geology Review, 49, 30-51. https://doi.org/10.2747/0020-6814.49.1.30
  31. Cho, M., Kim, H., Lee, Y., Horie, K. and Hidaka, H., 2008, The oldest (ca. 2.51 Ga) rock in South Korea: U-Pb zircon age of a tonalitic migmatite, Daeijak Island, western Gyeonggi massif. Geosciences Journal, 12, 1-6. https://doi.org/10.1007/s12303-008-0001-1
  32. Cho, M., Cheong, W. and Kim, J., 2010a, A geochronologic discontinuity in central Ogcheon Metamorphic Belt, Korea: Evidence from detrital zircon ages in metasedimentary rocks. Mineralogical Society of Korea and Petrological Society of Korea, annual joint meeting abstract volume, 31.
  33. Cho, M., Na, J. and Yi, K., 2010b, SHRIMP U-Pb ages of detrital zircons in metasandstones of the Taean Formation, western Gyeonggi massif, Korea: Tectonic implications. Geosciences Journal, 14, 99-109. https://doi.org/10.1007/s12303-010-0011-7
  34. Choi, D.K., 1994, Late Cambrian trilobite faunal successions of the Joseon Supergroup in the Yeongweol area and their paleobiogeographic implications. In: IGCP 321 - Gondwana Dispersion and Asian Accretion. Fourth International Symposium and Field Excursion, Abstracts with Programs, Seoul, 18.
  35. Choi, D.K., 1998, Ordovician trilobite faunal successions in the Taebaegsan rigion, Korea. In: IGCP 410 - The Great Ordovician Biodiversification Event. Abstracts with programs, Seoul National University, Korea, 10-14.
  36. Choi, P.Y., Rhee, C.W., Lim, S.-B. and So, Y., 2008, Sub-division of the Upper Paleozoic Taean Formation in the Anmyeondo-Boryeong area, west Korea: a preliminary approach to the sedimentary organization and structural features. Geosciences Journal, 12, 4, 373-384. https://doi.org/10.1007/s12303-008-0037-2
  37. Choi, S.G., Rajesh, V.J., Seo, J., Park, J.W., Oh, C.W., Park, S.J. and Kim, S.W., 2008, Petrology, geochronology and tectonic implications of Mesozoic high Ba-Sr granites in the Haemi area, Hongseong Belt, South Korea. Island Arc, 18, 266-281. https://doi.org/10.1111/j.1440-1738.2008.00622.x
  38. Dong, Y., Genser, J., Neubauer, F., Zhang, G., Liu, X., Yang, Z. and Heberer, B., 2011, U-Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling terrane, China. Gondwana Research, 19, 881-893. https://doi.org/10.1016/j.gr.2010.09.007
  39. Dong, Y., Zhang, G., Neubauer, F., Liu, X., Genser, J. and Hauzenberger, C., 2011, Tectonics evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41, 23-237.
  40. Ernst, W.G. and Liou, J.G., 1995, Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belt. Geology, 23, 353-356. https://doi.org/10.1130/0091-7613(1995)023<0353:CPTSOT>2.3.CO;2
  41. Ernst, W.G., Tsujimori, T., Zhang R. and Liou, J.G., 2007, Subduction-Zone Metamorphism and Tectonic Exhumation Along the East Asian Continental Margin. Annu. Rev. Earth Planet. Sci., 35, 73-100. https://doi.org/10.1146/annurev.earth.35.031306.140146
  42. Faure, M., Monie, P. and Fabbri, O., 1988, Microtectonics and 39Ar-40Ar dating of high pressure metamorphic rocks of the south Ryukyu Arc and their bearings on the pre-Eocene geodyanmc evolution of Eastern Asia. Tectonophysics, 156, 133-143. https://doi.org/10.1016/0040-1951(88)90287-9
  43. Guo, J., Zhai, M., Oh, C.W. and Kim, S.W., 2004. 230 Ma Eclogite fromBibong, Hongseong area, Gyeonggi Massif, South Korea: HP metamorphism, zircon SHRIMP U-Pb ages, and tectonic implication. Abstract volume of International Association for Gondwana Research, South Korea Chapter. Miscellaneous Publication, No.1, International Association for Gondwana Research, Chonju, 11-12.
  44. Hacker, B.R., Ratschbacher, L. and Liou, J.G., 2004, Sub-duction, collision and exhumation in the ultrahigh-pressure Qunling-Dabie orogen. In Aspects of the Tectonic Evolution of China, (ed. J. Malpas, C.J.N. Fletcher, J.R. Ali and J.C. Aitchison), The geological society publishing house, Brassmill Lane, 157-175.
  45. Hao, T.-Y., Xu, Y., Suh, M., Liu, J.-H., Zhang, L.-L. and Dai, M.-G., 2007, East Marginal Fault of the Yellow Sea: a part of the conjunction zone between Sino-Korea and Yangtze Blocks? Geological Society of London, Special Publications, 280, 281-291.
  46. Ilbeyli, N., Pearce, J.A., Thirlwall, M.F. and Mitchell, J.G., 2004, Petrogenesis of collision-related plutonics in Central Anatolia, Turkey. Lithos, 72, 163-182. https://doi.org/10.1016/j.lithos.2003.10.001
  47. Ishiwatari, A. and Tsujimori, T., 2003, Paleozoic ophiolites and blueschists in Japan and Russian Primorye in the tectonic framework of East Asia: A synthesis. Island Arc, 12, 190-206. https://doi.org/10.1046/j.1440-1738.2003.00390.x
  48. Isozaki, Y., 1997. Contrasting two types of orogen in Permo-Triassic Japan: accretionary versus collisional. Island Arc 6, 2-24. https://doi.org/10.1111/j.1440-1738.1997.tb00038.x
  49. Janasi, V.A., 2002, Elemental and Sr-Nd isotope geochemistry of two Neoproterozoic mangerite suites in SE Brazil: implications for the origin of the mangerite-charnockite-granite series. Precambrian Research, 119, 301-327. https://doi.org/10.1016/S0301-9268(02)00127-4
  50. Jeon, H., Cho, M., Kim, H., Horie, K. and Hidaka, H., 2007. Early Archean to Middle Jurassic Evolution of the Korean Peninsula and Its Correlation with Chinese Cratons: SHRIMP U-Pb Zircon Age Constraints. The Journal of Geology, 115, 525-539. https://doi.org/10.1086/519776
  51. Jeong, H. and Lee, Y.I., 2000, Late Cambrian biogeography: conodont bioprovinces from Korea. Palaeogeography, Palaeoclimatology, Palaeoecology, 162, 119-136. https://doi.org/10.1016/S0031-0182(00)00108-5
  52. Jijang, G., Sohl, L.E. and Christie-Blick, N., 2003, Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic implications. Geology, 917-920.
  53. Karipi, S., Tsikouras, B., Hatzipanagiotou, K. and Grammatikopoulos, T.A., 2007. Petrogenetic significance of spinel-group minerals from the ultramafic rocks of the Iti and Kallidromon ophiolites (Central Greece). Lithos, 99, 136-149. https://doi.org/10.1016/j.lithos.2007.06.005
  54. Kim, H.S. and Jung, W.S., 2010, The use of garnet porphyroblasts to resolve the metamorphic pressure-temperature-deformation (P-T-d) path: An example from the Imjingang belts, South Korea. Geosciences Journal, 14, 111-126. https://doi.org/10.1007/s12303-010-0012-6
  55. Kim, N., Cheong, C.S., Park, K.H., Kim, J. and Song, Y.S., 2011, Crustal evolution of northeastern Yeongnam Massif, Korea, revealed by SHRIMP U-Pb zircon geochronology and geochemisty. Gondwana Research, doi:10.1016/j.gr.2011.10.003
  56. Kim, S.W., Oh, C.W., Hyodo, H., Itaya, T. and Liou, J.G., 2005, Metamorphic Evolution of the Southwest Okcheon Metamorphic Belt in South Korea and Its Regional Tectonic Implications. International Geology Review, 47, 844-870.
  57. Kim, S.W., Oh, C.W., Ryu, I.C., Williams, I.S., Sajeev, K., Santosh, M. and Rajesh, V.J., 2006b, Neoproterozoic Bimodal Volcanism in the Okcheon Belt, South Korea, and Its Comparison with the Nanhua Rift, South China: Implications for Rifting in Rodinia. The Journal of Geology, 114, 717-733. https://doi.org/10.1086/507616
  58. Kim, S.W., Oh, C.W., Williams, I.S., Rubatto, D., Ryu, I.C, Rajesh, V.J., Kim, J.B., Guo, J., and Zhai, M., 2006a, Phanerozoic high-pressure eclogite and intermediatepressure granulite facies metamorphism in the Gyeonggi Massif, South Korea: implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos. 92, 357-377. https://doi.org/10.1016/j.lithos.2006.03.050
  59. Kim, S.W., Wiliams, I.S., Kwon, S. and Oh, C.W., 2008, SHRIMP zircon geochronology, and geochemical characteristics of metaplutonic rocks from the south-western Gyeonggi Block, Korea: Implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Precambrian Research, 162, 475-497. https://doi.org/10.1016/j.precamres.2007.10.006
  60. Kim, S.W., Kwon, S., Santosh, M., Williams, I.S. and Yi, K., 2011, A Paleozoic subduction complex in Korea: SHRIMP zircon U-Pb ages and tectonic implications. Gondwana Research, 20, 890-903. https://doi.org/10.1016/j.gr.2011.05.004
  61. Kim, T., Lee, S.Y. and Oh, C.W., 2009, The subduction and collision related middle Paleozoic metamorphism events in the SW of Gyeonggi Massif in South Korea and its meaning to the tectonics in Northeast Asia. AGU Fall meeting abstract.
  62. Kim, Y. and Cho, M., 2008, Two-stage growth of porphyroblastic biotite and garnet in the Barrovian metapelites of the Imjingang belt, central Korea. J. metamorphic Geol., 26, 385-399. https://doi.org/10.1111/j.1525-1314.2008.00767.x
  63. Kobayashi, T., 1930, The significance of the unconformity at the base of the Daido(Daedong) Formation. Journal of Geological Society of Japan, 37.
  64. Kwon, S., Sajeev, K., Mitra, G., Park, Y., Kim, S.W. and Ryu, I.C., 2009, Evidence of Permo Triassic collision in Far East Asia: the Korean collision orogen. Earth and Planetary Science Letter, 279, 340-349. https://doi.org/10.1016/j.epsl.2009.01.016
  65. Lee, K.S., Chang, H.W. and Park, K.H., 1998, Neoproterozoic bimodal volcanism in the central Ogcheon belt, Korea: age and tectonic implication. Precambrian Research, 89, 47-57. https://doi.org/10.1016/S0301-9268(97)00077-6
  66. Lee, S.R., Cho, M., Yi, K. and Stern, R.A., 2000, Early Proterozoic Granulites in Central Korea: Tectonic Correlation with Chinese Cratons. Journal of Geology, 108, 729-738. https://doi.org/10.1086/317951
  67. Lee, S.R., Lee, B.J., Cho, D.L., Kee, W.S.,, Koh, H.J., Kim, B.C., Song, K.Y., Hang, J.H. and Choi, B.Y., 2003, SHRIMP U-Pb zircon age from granitic rocks in Jeonju shear zone: Implications for the age of the Honam shear zone. Mineralogical Society of Korea and Petrological Society of Korea, annual joint meeting abstract volume, 55.
  68. Lee, S.Y. and Oh, C.W., 2009, Trassic post collisional igneous activity and granulite facies metamorphic event in the Yangpyeong area, South Korea and its meaning to the tectonics of Northeast Asia. Geological Society of Korea fall meeting Abstract volume, 227.
  69. Lee, Y.I. and Lee, J.I., 2003, Paleozoic sedimentation and tectonics in Korea: A review. Island Arc, 12, 162-179. https://doi.org/10.1046/j.1440-1738.2003.00388.x
  70. Li, X., Zhao, Z., Gui, X., Yu, J., 1992, Sm-Nd and zircon U-Pb isotopic constraints on the age of formation of the Precambrian crust in southeastern China. Chinese Journal of Geochemistry 11, 111-120. https://doi.org/10.1007/BF02871998
  71. Li, X.H., Li, Z.X., Li, W.X. and Wang, Y., 2006a, Initiation of the Indosinian Orogeny in South China: Evidence for a Permian Magmatic Arc on Hainan Island. The Journal of Geology, 114, 341-353. https://doi.org/10.1086/501222
  72. Li, X.H., Li, Z.X., Sinclair, J.A., Li, W.X. and Carter, G., 2006b, Revisiting the "Yanbian Terrane": Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Research, 151, 14-30. https://doi.org/10.1016/j.precamres.2006.07.009
  73. Li, Z.X., and Powell, C.M.A., 2001, An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth Science Reviews, 53, 237-277. https://doi.org/10.1016/S0012-8252(00)00021-0
  74. Li, Z.X., Zhang, L. and Powell, C.M.A., 1995, South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia? Geology 23, 407-410. https://doi.org/10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2
  75. Ling, W., Gao, S., Zhang, B., Li, H., Liu, Y. and Cheng, J., 2003, Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China:implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian. Research., 122, 111-140. https://doi.org/10.1016/S0301-9268(02)00222-X
  76. Liou, J.G., Zhang, R.Y., Wang, X., Eide, E.A., Ernst, W.G., and Maruyama, S., 1996, Metamorphism and tectonics of high-pressure and ultra-high-pressure belts in the Dabie-Sulu region, China. In The tectonic evolution of Asia (ed. A. Yin, M. Harrison) Cambridge University Press, New York, 300-344.
  77. Massonne, H. and O'Brien, P.J., 2003. The Bohemian Massif and the NW Himalaya. In Ultrahigh Pressure Metamorphism (ed. D.A Carswell, R. Compagnoni), EMU Notes in Mineralogy, Vol. 5. European Mineralogical Union, Budapest, 145-187.
  78. McKenzie, N.R., Hughes, N.C., Myrow, P.M., Choi, D.K. and Park, T.Y., 2011, Trilobites and zircons link north China with the eastern Himalaya during the Cambrian. Geology, 591-594.
  79. Metcalfe, I., 1996, Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences, 43, 605-623. https://doi.org/10.1080/08120099608728282
  80. Metcalfe, I., 2006, Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragment: The Korean Peninsula in context. Gondwana Research, 9, 24-46. https://doi.org/10.1016/j.gr.2005.04.002
  81. Nyman, M.W., Karlstrom, K.E., Kirby, E. and Graubard, C.M., 1994, Mesoproterozoic contractional orogeny in western North America: evidence from ca. 1.4 Ga plutons. Geology, 22, 901-904. https://doi.org/10.1130/0091-7613(1994)022<0901:MCOIWN>2.3.CO;2
  82. Oh, C.W., 2006, A New Concept on Tectonic Correlation between Korea, China and Japan: Histories from the Late Proterozoic to Cretaceous. Gondwana Research, 9, 47-61. https://doi.org/10.1016/j.gr.2005.06.001
  83. Oh, C.W., 2009, Systematic changes in metamorphic styles along the Dabie-Hongseong and Himalayan collision belts, and their tectonic implication. Asian Journal of Earth Science, 39, 635-644.
  84. Oh, C.W., and Liou, J.G., 1998, A petrogenetic grid for eclogite and related facies under high-pressure metamorphism. Island Arc, 7, 36-51. https://doi.org/10.1046/j.1440-1738.1998.00180.x
  85. Oh, C.W. and Kusky, T.M., 2007, The Late Permian to Triassic Hongseong-Odesan collision belt in South Korea, and its tectonic correlation with China and Japan. International Geology Review, 49, 639-657.
  86. Oh, C.W, Choi, S.G., Zhai, M. and Guo, J., 2003, The first finding of eclogite relict in the Korean Peninsula and its tectonic meaning. Abstract volume of The West Norway Eclogite Field Symposium, 107.
  87. Oh, C.W., Kim, S.W., Ryu, I., Okada, T., Hyodo, H. and Itaya, T., 2004, Tectono-metamorphic evolution of the Okcheon metamorphic belt, South Korea: tectonic implications in East Asia. Island Arc, 13, 387-402. https://doi.org/10.1111/j.1440-1738.2004.00433.x
  88. Oh, C.W., Kim, S.W., Choi, S.G., Zhai, M., Guo, J., and Sajeev, K., 2005, First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu collision belt in China. Journal of Geology, 113, 226-232. https://doi.org/10.1086/427671
  89. Oh, C.W., Sajeev, K., Kim, S.W. and Kwon, Y.W., 2006a, Mangerite Magmatism associated with a probable late Permian to Triassic Hongseong-Odesan collisional belt in South, Korea, Gondwana Research, 9, 95-105. https://doi.org/10.1016/j.gr.2005.06.005
  90. Oh, C.W., Kim, S.W. and Williams, I.S., 2006b, Spinel granulite in Odesan area, South Korea: tectonic implications for the collision between the North and South China blocks. Lithos, 92, 557-575. https://doi.org/10.1016/j.lithos.2006.03.051
  91. Oh, C.W., Choi, S.G., Seo, J., Rajesh, V.J., Ree, J.H., Zhai, M. and Peng, P., 2009, Neoproterozoic tectonic evolution of the Hongseong area, southwestern Gyeonggi Massif, South Korea; Implication for the tectonic evolution of Northeast Asia. Gondwana Research, 16, 272-284. https://doi.org/10.1016/j.gr.2009.04.001
  92. Oh, C.W., Seo, J., Choi, S.G., Rajesh, V.J. and Lee, J.H., 2012, U-Pb SHRIMP zircon geochronology, petrogensis, and tectonic setting of the Neoproterozoic Baekdong ultramafic rocks in the Hongseong Collision Belt, South Korea. Lithos, 128-131, 100-112. https://doi.org/10.1016/j.lithos.2011.10.008
  93. Otoh, S., and Yanai, S., 1996, Mesozoic inversive wrench tectonics, in far east Asia: Examples from Korea and Japan, In The tectonics evolution of Asia (ed. A, Yin., M, Harrison), Cambridge University Press, New York, 401-419.
  94. Otoh, S., Tsukada, K., Kasahara, K., Hotta, K., and Sasaki, M., 2003, Outline of the shear zones in the Hida Marginal Belt. Memoir of Fukui Prefectural Museum, 2, 63-73.
  95. Ozawa, K., 1983. Evaluation of olivine-spinel geothermometry as an indicator of thermal history for peridotites. Contributions to Mineralogy and Petrology. 82, 52-65. https://doi.org/10.1007/BF00371175
  96. Park, K.H., Park, J.B., Cheong, C.S. and Oh, C.W., 2005, Sr, Nd and Pb Isotopic Systematics of the Cenozoic Basalts of the Korean Peninsula and Their Implications for the Permo-Triassic Continental Collision Boundary. Gondwana Research, 8, 529-538. https://doi.org/10.1016/S1342-937X(05)71153-9
  97. Peng, P., Zhai, M., Guo, J., Zhang, H. and Zhang. Y., 2008, Petrogenesis of Triassic post-collisional syenite plutons in the Sino-Korean craton: an example from North Korea. Geological Magazine, 145, 1-11.
  98. Ree, J.H., Cho, M., Kwon, S.T., and Nakamura, E., 1996, Possible eastward extension of Chinese collision belt in South Korea: the Imjingang belt. Geology, 24, 1071-1074. https://doi.org/10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
  99. Sajeev, K., Jeong, J., Kwon, S., Kee, W.S., Kim, S.W., Komiya, T., Itaya, T., Jung, H.S. and Park, Y., 2010, High P-T granulite relicts from the Imjingang belt, South Korea: Tectonic significance. Gondwana Research, 17, 75-86. https://doi.org/10.1016/j.gr.2009.07.001
  100. Sagong, H., Kwon, S.-T. and Ree, J.-H., 2005, Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, 24, TC5002, doi:10.1029/2004TC001720
  101. Sao, J., Tang, K., Zai, L., Li, Z., Xu, G. and Wang, C., 1995, Reconstruction of a paleomargin and its implications: Advance in Yanbian geology, Science of China (series B), 25, 548-555.
  102. Seo, J., Choi, S.G., and Oh, C.W., 2010, Petrology, geochemistry, and geochronology of the Post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, SouthKorea. Gondwana Research, 18, 479-496. https://doi.org/10.1016/j.gr.2009.12.009
  103. Takagi, H. and Hara, T., 1994, Kinematics of the late Triassic dextral shear zone of the Hida belt, Central Japan, and its correlation to the Honam shear zone in the Ogcheon belt. 4th International Symposium and Field Excursion, IGCP 321 abstract volume, 121-122.
  104. Tsujimori, T., 2002, Prograde and retrograde P-T paths of the late Paleozoic glaucophane-eclogite from the Renge metamorphic belt, Hida mountains, southwestern Japan, International Geology Review, 44, 797-818. https://doi.org/10.2747/0020-6814.44.9.797
  105. Veevers, J.J., 2000, Billion-year Earth history of Australia and neighbours in Gondwana Sydney. Gemoc press, 400p.
  106. Wang, Q., Li, J.W., Jian, P., Zhao, Z.H., Xiong, X.L., Bao, Z.W., Xu, J.F., Li, C.F. and Na, J.L., 2005, Alkaline sysenites in eastern Cathaysia (South China): link to Permian-Triassic transtension. Earth and Planetary Science Letters, 230, 339-354. https://doi.org/10.1016/j.epsl.2004.11.023
  107. Wang, X., Liou, J.G., and Mao, H.K., 1989, Coesite-bearing eclogites from the Dabie Mountains in central China. Journal of Geology, 17, 1085-1088. https://doi.org/10.1130/0091-7613(1989)017<1085:CBEFTD>2.3.CO;2
  108. Williams, I.S., Cho, D.L. and Kim, S.W., 2009, Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: Constraints on Triassic post-collisional magmatisam. Lithos, 107, 239-256. https://doi.org/10.1016/j.lithos.2008.10.017
  109. Yang, J.H., Chung, S.L., Wilde, S.A., Wu, F.Y., Chu, M.F., Lo, C.H. and Fan, H.R., 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 214, 99-125. https://doi.org/10.1016/j.chemgeo.2004.08.053
  110. Yang, F.Q., Wu, H., Pirajno, F., Ma, B.Y., Xia, H.D., Deng, H.J., Liu, X.W. and Zhao, Y., 2007, The Jiazishan Syenite in northern Hebei: a record of lithospheric thinning in the Yanshan Intracontinental Orogenic Belt. Journal of Asian Earth Sciences, 29, 619-636. https://doi.org/10.1016/j.jseaes.2006.04.005
  111. Yao, Y., Ye, K., Liu, J., Cong, B. and Wang, Q., 2000, A transitional eclogite- to high pressure granulite-facies overprint on coesite-eclogite at Taohang in the Sulu ultrahigh-pressure terrane, Eastern China. Lithos, 52, 109-120. https://doi.org/10.1016/S0024-4937(99)00087-0
  112. Ye, M., Li, X., Li, W., Liu, Y. and Li, Z., 2007, SHRIMP zircon UPb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research, 12, 144-156. https://doi.org/10.1016/j.gr.2006.09.001
  113. Yin, A. and Nie. S., 1993, An indentation model for the north and south China collision and the development of the TanLu and Honam fault systems, eastern Asia. Tectonics, 12, 801-813. https://doi.org/10.1029/93TC00313
  114. Zhai, M. and Cong, B., 1996, Major and trace element geochemistry of eclogites and related rocks. In Ultrahigh-pressure metamorphic rocks in the Dabieshan-Sulu Region of China (ed. B. Cong), Kluwer Academic Publication, Dordrecht, 128-160.
  115. Zhai, M., Shao, J., Hao, J. and Peng, P., 2003, Geological signature and possible position of the North China block in the supercontinent Rodinia. Gondwana Research, 6, 171-183. https://doi.org/10.1016/S1342-937X(05)70968-0
  116. Zhai, M., Guo, J., Li, Z., Chen, D., Peng, P., Li, T., Hou, Q. and Fan, Q., 2007, Liking the Sulu UHP belt to the Korean Peninsula: Evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins. Gondwana Research, 12, 388-403. https://doi.org/10.1016/j.gr.2007.02.003
  117. Zhai, M., Ni, Z., Oh, C.W., Guo, J. and Choi, S.G., 2005, SHRIMP zircon age of a Proterozoic rapakivi granite batholith in the Gyeonggi massif (South Korea) and its geological implication. Geological Magazine, 142, 22-30.
  118. Zhang, K.J., 1997, North and South China collision along the eastern and southern North China margins. Tectonophysics, 270, 145-156. https://doi.org/10.1016/S0040-1951(96)00208-9
  119. Zhao, G., Cao, L., Simon, A.W., Min, S., Won, J.C. and Li, S., 2006, Implications based on the first SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth and Planetary Science Letters, 251, 365-379. https://doi.org/10.1016/j.epsl.2006.09.021
  120. Zhao, X. and Coe, R.S., 1987, Palaeomagnetic constraints on the collision and rotation of North and South China, Nature, 327, 141-144. https://doi.org/10.1038/327141a0

Cited by

  1. Tectonic and deformation history of the Gyeonggi Massif in and around the Hongcheon area, and its implications in the tectonic evolution of the North China Craton vol.240, 2014, https://doi.org/10.1016/j.precamres.2013.10.016
  2. SHRIMP U-Pb Ages of the Yongyudo biotite Granites vol.23, pp.4, 2014, https://doi.org/10.7854/JPSK.2014.23.4.393
  3. Origin of adakite-like plutons in southern Korea vol.262, 2016, https://doi.org/10.1016/j.lithos.2016.07.040
  4. Geochemistry, zircon U–Pb ages, and Hf isotopic compositions of Precambrian gneisses in the Wonju–Jechon area of the southern Gyeonggi Massif: Implications for the Precambrian tectonic evolution of Korea and northeast Asia vol.283, 2016, https://doi.org/10.1016/j.precamres.2016.07.014
  5. Paleoproterozoic magmatic and metamorphic events in the Hongcheon area, southern margin of the Northern Gyeonggi Massif in the Korean Peninsula, and their links to the Paleoproterozoic orogeny in the North China Craton vol.248, 2014, https://doi.org/10.1016/j.precamres.2014.04.003
  6. SHRIMP U-Pb Zircon Geochronology of the Guryong Group in Odesan Area, East Gyeonggi Massif, Korea: A new identification of Late Paleozoic Strata and Its Tectonic Implication vol.23, pp.3, 2014, https://doi.org/10.7854/JPSK.2014.23.3.197
  7. Review on the Triassic Post-collisional Magmatism in the Qinling Collision Belt vol.23, pp.4, 2014, https://doi.org/10.7854/JPSK.2014.23.4.293
  8. Tracking source materials of Phanerozoic granitoids in South Korea by zircon Hf isotopes vol.25, pp.3, 2013, https://doi.org/10.1111/ter.12027
  9. Reply to comment on “Tectonic and deformation history of the Gyeonggi Massif in and around the Hongcheon area, and its implications in the tectonic evolution of the North China Craton” by Yan et al. [Precambrian Res. (2014)] vol.255, 2014, https://doi.org/10.1016/j.precamres.2014.08.010
  10. Permo-Triassic and Paleoproterozoic metamorphism related to continental collision in Yangpyeong, South Korea vol.216-217, 2015, https://doi.org/10.1016/j.lithos.2014.12.016
  11. The metamorphic evolution from ultrahigh-temperature to amphibolite facies metamorphism in the Odaesan area after the collision between the North and South China Cratons in the Korean Peninsula vol.256-257, 2016, https://doi.org/10.1016/j.lithos.2016.03.019
  12. Mineralogy and sulfur isotope compositions of the uraniferous black slates in the Ogcheon Metamorphic Belt, South Korea vol.169, 2016, https://doi.org/10.1016/j.gexplo.2016.07.008
  13. Fast cooling following a Late Triassic metamorphic and magmatic pulse: implications for the tectonic evolution of the Korean collision belt vol.662, 2015, https://doi.org/10.1016/j.tecto.2015.06.016