DOI QR코드

DOI QR Code

Impacts of Green Manure Crop and Charcoal Applications on Ginger Growth and Soil Properties

녹비작물 및 Charcoal 처리가 생강 생육 및 토양 특성에 미치는 영향

  • 양홍석 (전북대학교 대학원 농화학과) ;
  • 김동진 (전북대학교 대학원 농화학과) ;
  • 안병구 (전라북도농업기술원 기후변화대응과) ;
  • 이진호 (전북대학교 생물환경화학과)
  • Received : 2014.08.21
  • Accepted : 2014.09.01
  • Published : 2014.09.30

Abstract

This study was conducted to investigate ginger growth and its nutrient uptake depending on changes of soil properties as affected by applications of green manure crop and/or charcoal in continuous cropping system. The green manure crops applied were barley and hairy vetch, and charcoal was additionally treated in selected plots as a soil conditioner. Experimental plots were prepared as Plot 1 (control), Plot 2 (barley of 8kg $10a^{-1}$), Plot 3 (hairy vetch of 12kg $10a^{-1}$), Plot 4 (charcoal of 1,000kg $10a^{-1}$ and barley 8kg $10a^{-1}$), and Plot 5 (charcoal of 1,000kg $10a^{-1}$ and hairy vetch of 12kg $10a^{-1}$) with two different soil conditions (high clay content, HCC and low clay content, LCC). When comparing selected chemical properties of soils before and after cultivating ginger plant, soil pH decreased from 6.9~8.1 to 6.8~7.6, and electrical conductivity (EC) also declined from $0.45{\sim}1.25dSm^{-1}$ to $0.30{\sim}0.61dSm^{-1}$. However, the content of soil organic matter (SOM) and total nitrogen (T-N) increased. Thus, the soil chemical properties were improved with the applications of green manures and charcoal. Also, macro- and micro-nutrient contents of ginger plants in the different plots were various between normal and diseased plants grown in soils with HCC and LCC. In particular, the concentration of manganese (Mn) was 3~4 folds higher in the diseased plant than in the normal plants. Ginger growth status and yield was relatively improved with the applications of green manures and charcoal as comparing with control plot. Especially in the Plot 4 with LCC, the ginger plant was not infected by root-rot disease.

녹비작물로서 녹비보리와 헤어리베치를 환원하고, 토양개량제로서 charcoal을 시용하여 생강연작 재배지에서 생강을 재배한 결과, 토양 pH가 시험 전 6.9~8.1에서 수확 후 6.8~7.6로 감소하였으며, 전기전도도(electrical conductivity, EC)는 한 시험 전 $0.45{\sim}1.25dSm^{-1}$에서 수확 후 $0.30{\sim}0.61dSm^{-1}$로 감소하였다. 토양유기물(soil organic matter, SOM) 함량과 토양 중 총질소(total-nitrogen, T-N) 함량은 증가하였다. 유효인산 함량과 치환성 K, Ca, Mg 함량은 유의성 있는 차이가 나타나지 않았다. 그러나, 토양 pH를 중성화시키고, EC 경감, SOM과 T-N 함량의 증가는 토양 화학성 변화에 있어 긍정적으로 평가할 수 있다. 생강양분의 함량적 차이를 정상근과 이병근의 함량 차이, 토양의 점토함량 별 양분 함량 차이로 조사한 결과, 유의성이 있는 결과를 얻었으며, 처리구별로 차이가 있는 것으로 나타났다. 특히, 망간(manganese, Mn)의 경우, 이병근의 지하부에서 3~4배 정도 높은 것으로 나타났는데, 망간(Mn)은 식물 뿌리에 대한 독성 작용으로 뿌리를 갈변시키고 균열을 일으키는 것으로 보고된바, 뿌리썩음병의 발생으로 Mn이 작용하여 이병근의 Mn 함량이 높은 것으로 보인다. 따라서, 뿌리썩음병과 Mn의 상관관계를 밝히는 추가 연구가 필요할 것으로 판단된다. 또한, 생강 수확 후 생강 생육 상태와 생산량을 조사한 결과, 녹비보리, 헤어리베치, 녹비보리+charcoal, 헤어리베치+charcoal을 처리한 시험구(Plot 2, Plot 3, Plot 4, Plot 5)에서 생강의 생육상태가 양호하고 생산량이 높아 병발생률이 상대적으로 낮게 나타났다. 특히, Plot 4(헤어리베치+charcoal)-LCC에서는 100%의 생산량을 보였다. 녹비작물과 charcoal의 처리가 생강생육과 생산에 있어 긍정적인 영향을 미친 것으로 판단된다. 그리고, 상대적으로 점토함량이 낮은 처리구가 점토함량이 높은 처리구보다 생육 상태와 생산량에서 우세하였는데, 모래와 점토 함량 차이에 따른 배수와 토양의 수분보유력이 생강생육에 큰 영향을 준 것으로 판단된다.

Keywords

References

  1. Bronick, C. J. and R. Lai. 2005. Soil structure and management: a review. Geoderma. 124 (1-2): 3-22. https://doi.org/10.1016/j.geoderma.2004.03.005
  2. Cho, H. S., W. Y. Park, W. T. Jeon, K. Y. Seong, C. G. Kim, T. S. Park, and J. D. Kim. 2011. Effect of green manure barley and hairy vetch on soil characteristics and rice yield in paddy. CNU J. Agric. Sci. 38(4): 703-709.
  3. Cho, J. H., S. M. Oh, S. P. Lee, and S. D. Bea. 1996. Research report: Effects of irrigation time on growth and yield of Dioscorea batatas DECNE. Korean J. Med. Crop Sci. 4(3):205-211.
  4. Choi, B. S., J. A. Jung, M. K. Oh, S. H. Jeon, H. G. Goh, Y. S. Ok, and J. K. Sung. 2010a. Effects of green manure crops on improvement of chemical and biological properties in soil. Korean J. Soil Sci. Fert. 43(5): 650-658.
  5. Choi, B. S., J. K. Sung, S. S. Lee, J. J. Nam, S. G. Hong, R. Y. Kim, J. E. Yang, and Y. S. Ok. 2010b. Effects of rape residue as green manure on rice growth and weed suppression. Korean J. Environ. Agric. 29: 109-114. https://doi.org/10.5338/KJEA.2010.29.2.109
  6. Dohroo, N. P. 2005. Disease of ginger, p. 305-340. In: Ravindran, P.N. and K. Nirmal Babu. Ginger: The Genus Zingiber. CRC Press, Boca Raton, FL, USA.
  7. Foy, C. D., R. Weil, and C. A. Coradetti. 1995. Differential manganese tolerances of cotton genotypes in nutrient solution. J. Plant Nutr. 18(4): 685-706. https://doi.org/10.1080/01904169509364931
  8. Fred, M. and E. Harold. 2000. Building soils for better crops. Part 2. Ecological soil & crop management. Chapter 10. Cover crops. 87-98, Sustainable Agriculture Mnetwork.
  9. Gee, G. W. and J. W. Bauder. 1986. Particle size analysis, p. 383-411. In: Klute, A. Method of soil analysis part I. (2nd ed.). America Society of Agronomy, Madison, WI, USA.
  10. Jeon, W. T., K. Y. Seong, J. K. Lee, M. T. Kim, and H. S. Cho. 2009. Effects of seeding rate on hairy vetch (Vicia villosa)-rye (Secale cereale) mixtures for green manure production in upland soil. Korean J. Crop Sci. 54(3): 327-331.
  11. Kim, C. G., J. H. Seo, S. H. Cho, and S. J. Kim. 2002. Effect of hairy vetch as green manure on rice cultivation. Korean J. Soil Sci. Fert. 35(3): 159-174.
  12. Kim, C. H., K. D. Hahn, and K. S. Park. 1996. Survey of rhizome rot incidence of ginger in major production areas in Korea. Korean J. Plant Pathol. 12(3): 336-344.
  13. Kim, S. Y., S. O. Shin, Y. C. Ku, and S. T. Park. 2006. Effect of long-term dry-seeded rice on growth, rice yield and soil physicochemical properties in rice-barley double cropping system. Korean J. Int. Agric. 18(4): 281-286.
  14. Le Bot, J., E. A. Kirkby, and M. L. Van Beusichem. 1990. Manganese toxicity in tomato plants: Effects on cation uptake and distribution. J. Plant Nutr. 13(5): 513-525. https://doi.org/10.1080/01904169009364096
  15. Lee, D. K., J. S. Shim, H. K. Shim, Y. H. Lee, and H. K. Park. 1999. Incubational characteristics of Bacillus polymyxa 'HB26-5' antagonistic to ginger rhizome rot and its formulation. Korean J. Plant Resour. 12(4): 289-296.
  16. Lee, M. T., C. J. Asher, and A. W. Whilley. 1981. Nitrogen nutrition of ginger effect of nitrogen supply on growth and development. Field Crops Res. 4: 55-68. https://doi.org/10.1016/0378-4290(81)90054-X
  17. Lee, S. H., W. T. Jeon, M. T. Kim, H. S. Cho, and B. H. Song. 2009. Study on productivity, mineral contents, and the uptake amounts of hairy vetch as green manure crop with different seeding dates and amounts. J. Agric. Sci. 25(1): 1-6.
  18. Lee, W. H. and D. K. Lee. 1998. Ecology of rhizome rot incidence of ginger and relation of soil texture, chemistry and biology. Korean J. Environ. Agric. 17(1): 1-4.
  19. Lee, W. H. and D. K. Lee. 1998. Ecology of rhizome rot incidence of ginger and relation of soil texture, chemistry and biology. Korean J. Environ. Agric. 17(1): 1-4.
  20. Lim, J. E, S. S. Lee, S. H. Jeong, Y. B. Choi, S. W. Kim, Y. B. Lee, and Y. S. Ok. 2012a. Evaluation of C and N mineralization in soil incroporated with green manure. Korean J. Agric. Life Environ. Sci. 24(4): 8-16.
  21. Lim, T. J., K. I. Kim, J. M. Park, S. E. Lee, and S. D. Hong. 2012b. The use of green manure crops as a nitrogen source for lettuce and chinese cabbage production in greenhouse. Korean J. Environ. Agric. 31(3): 212-216. https://doi.org/10.5338/KJEA.2012.31.3.212
  22. Lim, T. J., S. D. Hong, S. H. Kim, and J. M. Park. 2007. Recommendation of nitrogen fertilization for cucumber from relationship between soil nitrate nitrogen and yield. Korean J. Environ. Agric. 26(3): 223-227. https://doi.org/10.5338/KJEA.2007.26.3.223
  23. MFAFF(Ministry for Food, Agriculture, Forestry and Fisheries). 2009. Selection of barley varieties for replacing imported seeds of green manure crops and identification of effects on environment friendly agriculture. p. 190, Ministry for Food, Agriculture, Forestry and Fisheries, Korea.
  24. NAAS (National Academy of Agricultural Science). 2010a. Fertilization standard on crops. National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea.
  25. NAAS (National Academy of Agricultural Science). 2010b. Methods of soil chemical analysis. National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea.
  26. NIAST (National Institute of Agricultural Science and Technology). 2000. Method of soil and plant analysis. National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon, Korea.
  27. Oguntunde, P. G., M. Fosu, A. E. Ajayi, and N. van de Giesen. 2004. Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol. Fertil. Soils 39:295-299. https://doi.org/10.1007/s00374-003-0707-1
  28. Power, J. F. and J. A. Zachariassen. 1993. Relative nitrogen utilization by legume cover crop species at three soil temperatures. Agron. J. 85: 1134-1140.
  29. Smith M. S., W. W. Frye, and J. J. Varco. 1987. Legume winter cover crops. Soil Sci. 7:95-139. https://doi.org/10.1007/978-1-4612-4790-6_3
  30. Van Breemen, N., J. Mulder, and C. T. Driscoll. 1983. Acidification and alkalinization of soils. Plant Soil 75: 283-308. https://doi.org/10.1007/BF02369968
  31. Yang, C. H., J. H. Ryu, T. K. Kim, S. B. Lee, J. D. Kim, N. H. Baek, S. Kim, W. Y. Choi, and S. J. Kim. 2009. Effect of green manure crops incorporation with rice cultivation on soil fertility improvement in paddy field. Korean J. Soil Sci. Fert. 42(5): 371-378.
  32. Yang, S. K., Y. W. Seo, Y. S. Kim, S. K. Lim, K. H. Choi, J. H. Lee, and W. J. Jung. 2011. Changes of pepper yield and chemical properties of soil in the application of different green manure crops and no-tillage organic cultivation. Korean J. Org. Agric. 17(3): 381-389.