DOI QR코드

DOI QR Code

Antioxidant Activities of Green and Purple Kohlrabi Juices

녹색 및 자색 콜라비 착즙액의 항산화 활성

  • Kim, Dan-Bi (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Oh, Ji-Won (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Lee, Jong Seok (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Kim, Yeong-Hyeon (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Park, In-Jae (Hurum Central Research Institute) ;
  • Cho, Ju Hyun (Hurum Central Research Institute) ;
  • Lee, Ok-Hwan (Department of Food Science and Biotechnology, Kangwon National University)
  • 김단비 (강원대학교 식품생명공학과) ;
  • 오지원 (강원대학교 식품생명공학과) ;
  • 이종석 (강원대학교 식품생명공학과) ;
  • 김영현 (강원대학교 식품생명공학과) ;
  • 박인재 ((주) 휴럼 중앙연구소) ;
  • 조주현 ((주) 휴럼 중앙연구소) ;
  • 이옥환 (강원대학교 식품생명공학과)
  • Received : 2014.02.14
  • Accepted : 2014.03.13
  • Published : 2014.10.31

Abstract

In this study, we investigated the antioxidant activity of green kohlrabi juice (GKJ) and purple kohlrabi juice (PKJ) using various in vitro methods. The results of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activities, ferric ion reducing antioxidant power (FRAP), reducing power, and nitrite scavenging activities showed that GKJ possessed higher antioxidant activity than PKJ. Green kohlrabi powder (GKJP) and purple kohlrabi powder (PKJP) inhibited hydrogen peroxide-induced cell death in human dermal fibroblasts. In addition, GKJP and PKJP suppressed intracellular reactive oxygen species (ROS) production induced by hydrogen peroxide in human dermal fibroblasts. These results suggest that green and purple kohlrabi juices are potential natural sources of antioxidants.

본 연구에서는 녹색 및 자색 콜라비 착즙액의 이화학적 특성(pH 및 $^{\circ}Bx$), 총 페놀함량, 항산화 활성(ORAC 지수, DPPH radical 소거능, ABTS radical 소거능, FRAP 및 reducing power), 아질산염 소거능, 피부 섬유아세포에서의 세포 보호 효과 및 ROS 생성억제 효과를 측정하였다. 총 페놀 함량은 녹색 콜라비 착즙액(153.74 mg GAE/mL)에서 자색 콜라비 착즙액(122.55 mg GAE/mL)보다 더 높게 나타난 반면, ORAC 지수의 경우 자색 콜라비 착즙액($664.32{\mu}MTE/mL$ )에서 녹색 콜라비 착즙액($572.74{\mu}MTE/mL$)보다 더 높게 나타났다. DPPH radical 소거능, ABTS radical 소거능, FRAP 및 reducing power에서는 콜라비 착즙액 10, 50, 100% 농도에서 농도 의존적으로 항산화 활성이 증가하는 경향을 나타내었으며, 같은 농도로 비교하였을 때, 녹색 콜라비 착즙액에서 자색 콜라비 착즙액보다 높은 항산화 활성을 보였다. 아질산염 소거능에서도 녹색 콜라비 착즙액이 자색 콜라비 착즙액보다 높은 효능을 나타내었다. 피부 섬유아세포에서는 녹색 및 자색 콜라비 착즙액을 동결 건조하여 사용하였으며 10, 25, $50{\mu}g/mL$의 농도에서 독성을 나타내지 않았다. Hydrogen peroxide로 산화적 스트레스를 유도한 상태에서 세포 보호 효과를 측정한 결과 $10{\mu}g/mL$의 농도에서는 녹색 및 자색 콜라비 착즙액에서 hydrogen peroxide를 처리한 군과 차이를 나타내지 않았으나, 25, $50{\mu}g/mL$의 농도에서는 농도 유의적으로 세포보효효과가 증가하였다. 또한 녹색 콜라비 착즙액에서는 양성대조군으로 사용한 항산화 물질인 NAC 수준까지 세포생존율이 증가하였다. $H_2$-DCFDA 염색을 통하여 관찰한 ROS 생성 억제 효과는 세포 보호 효과와 유사한 경향으로 관찰되었다. 이상의 결과를 종합하여 볼 때 녹색 및 자색 콜라비 착즙액이 다양한 항산화 모델에서 효능을 나타내었으며, 피부 섬유아세포에서 세포 보호 효과 및 ROS 생성 억제효과가 관찰되어 기능성 식품원료로서의 활용도가 매우 넓을 것으로 판단된다.

Keywords

References

  1. Drge W. Free radicals in the physiological control of cell function. Physiol. Rev. 82: 47-95 (2002)
  2. Halliwell B, Aeschbach R, Lliger J, Aruoma OI. The characterization of antioxidants. Food Chem. Toxicol. 33: 601-617 (1995) https://doi.org/10.1016/0278-6915(95)00024-V
  3. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39: 44-84 (2007) https://doi.org/10.1016/j.biocel.2006.07.001
  4. Harman D. Free radical theory of aging. Mutat. Res. 275: 257-266 (1992) https://doi.org/10.1016/0921-8734(92)90030-S
  5. Macleod G, Macleod AJ. The glucosinolates and aroma volatiles of green kohlrabi. Phytochemistry 29: 1183-1187 (1990) https://doi.org/10.1016/0031-9422(90)85425-F
  6. Lee JW, Lee DY, Cho JG, Baek NI, Lee YH. Isolation and identification of sterol compounds from the red kohlrabi (Brassica oleracea var. gongylodes) sprouts. J. Appl. Biol. Chem. 53: 207-211 (2010) https://doi.org/10.3839/jabc.2010.037
  7. Park WT, Kim JK, Park S, Lee SW, Li X, Kim YB, Uddin MR, Park NI, Kim SJ, Park SU. Metabolic profiling of glucosinolates, anthocyanins, carotenoids, and other secondary metabolites in kohlrabi (Brassica oleracea var. gongylodes). J. Agr. Food Chem. 60: 8111-8116 (2012) https://doi.org/10.1021/jf301667j
  8. Xiao Z, Lester GE, Luo Y, Wang Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. J. Agr. Food Chem. 60: 7644-7651 (2012) https://doi.org/10.1021/jf300459b
  9. Vicas SI, Teusdea AC, Carbunar M, Socaci SA, Socaciu C. Glucosinolates profile and antioxidant capacity of romanian brassica vegetables obtained by organic and conventional agricultural practices. Plant Foods Hum. Nutr. 68: 313-321 (2013) https://doi.org/10.1007/s11130-013-0367-8
  10. Cha SS, Lee MY, Lee JJ. Comparison of pysicochemical composition of kohlrabi flesh and peel. Korean J. Food Preserv. 20: 88-96 (2013) https://doi.org/10.11002/kjfp.2013.20.1.88
  11. Yuru Y, Feng WY, Wei MJ, Gen ZL, Wang LS. Screening of Chinese brassica species for anti-cancer sulforaphane and erucin. Afr. J. Biotechnol. 7: 147-152 (2008)
  12. Aires A, Mota VR, Saavedra MJ, Rosa EAS, Bennett RN. The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. J. Appl. Microbiol. 106: 2086-2095 (2009) https://doi.org/10.1111/j.1365-2672.2009.04180.x
  13. Halliwell B, Gutteridge JMC. 3rd, pp. 246-350. In: Free Radicals in Biology and Medicine. Halliwell B, Gutteridge JMC. Oxford University Press, New York, NY, USA (1999)
  14. Kalt W. Effects of production and processing factors on major fruit and vegetable antioxidants. J. Food Sci. 70: 11-19 (2005) https://doi.org/10.1111/j.1365-2621.2005.tb09053.x
  15. Duval B, Shetty K. The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed anise root extract. J. Food Biochem. 25: 361-377 (2001) https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  16. Ou B, Hampsch-Woodill M, Prior RL. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agr. Food Chem. 49: 4619-4626 (2001) https://doi.org/10.1021/jf010586o
  17. Liang XL, Wang XL, Li Z, Hao QH, Wang SY. Improved in vitro assays of superoxide anion and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity of isoflavones and isoflavone metabolites. J. Agr. Food Chem. 58: 11548-11552 (2010) https://doi.org/10.1021/jf102372t
  18. Custdio L, Ferreira AC, Pereira H, Silvestre L, Vizetto-Duarte C, Barreira L, Rauter AP, Albercio F, Varela J. The marine halophytes Carpobrotus edulis L. and Arthrocnemum macrostachyum L. are potential sources of nutritionally important PUFAs and metabolites with antioxidant, metal chelating and anticholinesterase inhibitory activities. Bot. Mar. 55: 281-288 (2012)
  19. Biglari F, AlKarkhi AF, Easa AM. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 107: 1636-1641 (2008) https://doi.org/10.1016/j.foodchem.2007.10.033
  20. Jayaprakasha GK, Singh RP, Sakariah KK. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 73: 285-290 (2001) https://doi.org/10.1016/S0308-8146(00)00298-3
  21. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agr. Biol. Chem. 51: 1333-1338 (1987) https://doi.org/10.1271/bbb1961.51.1333
  22. Yun JS, Pahk JW, Lee JS, Shin WC, Lee SY, Hong EK. Inonotus obliquus protects against oxidative stress-induced apoptosis and premature senescence. Mol. Cells 31: 423-429 (2011) https://doi.org/10.1007/s10059-011-0256-7
  23. Lopes TJ, Quadri MG, Quadri MB. Recovery of anthocyanins from red cabbage using sandy porous medium enriched with clay. Appl. Clay Sci. 37: 97-106 (2007) https://doi.org/10.1016/j.clay.2006.11.003
  24. Ryu KD, Chung DK, Kim JK. Comparison of radish cultivars for physicochemical properties and kakdugi preparation. Korean J. Food Sci. Technol. 32: 681-690 (2000)
  25. Maeda T, Kakuta H, Sonoda T, Motoki S, Ueno R, Suzuki T, Oosawa K, Suzuki T. Antioxidation capacities of extracts from green, purple, and white asparagus spears related to polyphenol concentration. Hortscience 40: 1221-1224 (2005)
  26. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J. Agr. Food. Chem. 53: 1841-1856 (2005) https://doi.org/10.1021/jf030723c
  27. Ronald L, Hoang HA, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agr. Food. Chem. 51: 3273-3279 (2003) https://doi.org/10.1021/jf0262256
  28. Aaby K, Hvattum E, Skrede G. Analysis of flavonoids and other phenolic compounds using high-performance liquid chromatography with coulometric array detection: relationship to antioxidant activity. J. Agr. Food. Chem. 52: 4595-4603 (2004) https://doi.org/10.1021/jf0352879
  29. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. Screening of the antioxidant activity of some medicinal plants. Korean J. Food Sci. Technol. 36: 333-338 (2004)
  30. Wootton-Beard PC, Moran A, Ryan L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods. Food Res. Int. 44: 217-224 (2011) https://doi.org/10.1016/j.foodres.2010.10.033
  31. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  32. Prior RL, Wu X , Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agr. Food Chem. 53: 4290-4302 (2005) https://doi.org/10.1021/jf0502698
  33. Berker KI, Demirata B, Apak R. Determination of total antioxidant capacity of lipophilic and hydrophilic antioxidants in the same solution by using ferric-ferricyanide assay. Food Anal. Methods 5: 1150-1158 (2012) https://doi.org/10.1007/s12161-011-9358-2
  34. Carillon J, Del Rio D, Teissdre PL, Cristol JP, Lacan D, Rouanet JM. Antioxidant capacity and angiotensin I converting enzyme inhibitory activity of a melon concentrate rich in superoxide dismutase. Food Chem. 135: 1298-1302 (2012) https://doi.org/10.1016/j.foodchem.2012.05.064
  35. Jin Q, Park JR, Kim JB, Cha MH. Physiological activity of zizyphus jujaba leaf extracts. J. Korean Soc. Food Sci. Nutr. 28: 593-598 (1999)
  36. Schindowski K, Leutner S, Kressmann S, Eckert A, Muller WE. Age-related increase of oxidative stress-induced apoptosis in mice prevention by ginkgo biloba extract (EGb761). J. Neural. Transm. 108: 969-978 (2001) https://doi.org/10.1007/s007020170016
  37. Phan TT, Wang L, See P, Grayer RJ, Chan SY, Lee ST. Phenolic compounds of Chromolaena odorata protect cultured skin cells from oxidative damage: implication for cutaneous wound healing. Biol. Pharm. Bull. 24: 1373-1379 (2001) https://doi.org/10.1248/bpb.24.1373
  38. Bae JY, Choi JS, Choi YJ, Shin SY, Kang SW, Han SJ, Kang YH. (-) Epigallocatechin gallate hampers collagen destruction and collagenase activation in ultraviolet-B-irradiated human dermal fibroblasts: Involvement of mitogen-activated protein kinase. Food Chem. Toxicol. 46: 1298-1307 (2008). https://doi.org/10.1016/j.fct.2007.09.112

Cited by

  1. Effects of Purple Kohlrabi (Brassica oleracea var. gongylodes) Flesh and Peel Ethanol Extracts on the Antioxidant Activity and Antiproliferation of Human Cancer Cells vol.26, pp.2, 2015, https://doi.org/10.7856/kjcls.2015.26.2.405
  2. Protective Effect of Angelica keiskei Juice and Oenanthe javanica DC Juice on Oxidative Stress vol.47, pp.4, 2015, https://doi.org/10.9721/KJFST.2015.47.4.517
  3. Changes in Antioxidant and Cancer Cell Growth Inhibitory Activities of Spergularia marina Griseb Extract according to Different Cooking Methods vol.33, pp.6, 2017, https://doi.org/10.9724/kfcs.2017.33.6.673