DOI QR코드

DOI QR Code

Novel conducting lithium ferrite/chitosan nanocomposite: Synthesis, characterization, magnetic and dielectric properties

  • Srivastava, Manish (Department of Physics, School of Vocational Studies and Applied Sciences, Gautam Buddha University) ;
  • Singh, Jay (Department of Applied Chemistry & Polymer Technology, Delhi Technological University) ;
  • Mishra, Rajneesh K. (Department of Physics, Motilal Nehru National Institute of Technology) ;
  • Singh, Manish K. (Department of Physics, The LNM Institute of Information Technology) ;
  • Ojha, Animesh K. (Department of Physics, Motilal Nehru National Institute of Technology) ;
  • Yashpal, Madhu (Electron Microscope Facility, Department of Anatomy Institute of Medical Sciences, Banaras Hindu University) ;
  • Sudhanshu, Srivastava (Department of Physics and Electronics, Dr. R. M. L. Avadh University)
  • Received : 2013.10.20
  • Accepted : 2014.04.22
  • Published : 2014.09.30

Abstract

A study on Lithium ferrite/chitosan nanocomposite (LFCN), easily moldable into arbitrary shapes, as the conducting polymer and ferromagnetic characteristics is presented. The composite material is produced in the presence of $Li_{0.5}Cr_{0.1}Fe_{2.4}O_4$ and $Li_{0.5}Co_{0.1}Fe_{2.4}O_4$ nanoparticle by ex-situ polymerizations process. Various characterizations techniques have been used to explore the characteristic of the synthesized products. The frequency dependent dielectric properties and electrical conductivity of all the samples have been measured through complex impedance plot in the frequency range of 1 kHz-6 MHz at room temperature. It was observed that in case of (LFCN), fluctuation in value of (${\varepsilon}^{\prime}$) and (${\varepsilon}^{{\prime}{\prime}}$) is ceased over the frequency range of 4 Mz which can be attributed to the steady storage and dissipation of energy in the nanocomposite system. Moreover, it is also observed that electrical conductivity of (LFCN) increases with frequency and its value was found to be (0.032-0.048) $(ohm-cm)^{-1}$ in frequency range of 1 kHz-6 MHz. Due to its low cost, a simple synthesis process and high flexibility, the proposed LFCN may find applications in various types of electronic components.

Keywords

References

  1. T. Hanemann, D.V. Szabo, Materials 3 (2010) 3468-3517. https://doi.org/10.3390/ma3063468
  2. J. Stabik, A. Dybowska, J. Pluszynski, M. Szczepanik, L. Suchon, Arch. Mater. Sci. Eng. 41 (2010) 13-20.
  3. Y. Whulanza, E. Battini, L. Vannozzi, M. Vomero, A. Ahluwalia, G. Vozzi, J. Nanosci. Nanotechnol. 13 (2013) 188-197. https://doi.org/10.1166/jnn.2013.6708
  4. I. Ali, A. Shakoor, M.U. Islam, M. Saeed, M.N. Ashiq, M.S. Awan, Curr. Appl. Phys. 13 (2013) 1090-1095. https://doi.org/10.1016/j.cap.2013.02.014
  5. M.A. Rehim, A. Youssef, E. Hassan, N. Khatab, G. Turky, Synth. Met. 160 (2010) 1774-1779. https://doi.org/10.1016/j.synthmet.2010.06.019
  6. H. Yang, Y. Lin, J. Zhu, F. Wang, Curr. Appl. Phys. 10 (2010) 1148-1151. https://doi.org/10.1016/j.cap.2010.02.001
  7. L. Kong, X. Lu, E. Jin, S. Jiang, X. Bian, W. Zhang, C. Wang, J. Solid State Chem. 182 (2009) 2081-2087. https://doi.org/10.1016/j.jssc.2009.05.021
  8. A.L. Kavitha, H. Gurumallesh Prabu, S. Ananda Babu, S.K. Suja, J. Nanosci. Nanotechnol. 13 (2013) 98-104. https://doi.org/10.1166/jnn.2013.6720
  9. L. Luo, Q. Li, Y. Xu, Y. Ding, X. Wang, D. Deng, Y. Xu, Sens. Actuators B 145 (2010) 293-298. https://doi.org/10.1016/j.snb.2009.12.018
  10. J.H. Parka, K.H. Ima, S.H. Leea, D.H. Kima, D.Y. Leea, Y.K. Leea, K.M. Kim, K.N. Kim, J. Magn. Magn. Mater. 293 (2005) 328-333. https://doi.org/10.1016/j.jmmm.2005.02.027
  11. H.Y. Lee, S.P. Rwei, L. Wang, P.H. Chen, Mater. Chem. Phys. 112 (2008) 805-809. https://doi.org/10.1016/j.matchemphys.2008.06.050
  12. T.H. Hsieh, K.S. Ho, X. Bi, C.H. Huang, Y.Z. Wang, Y.K. Han, Z.L. Chen, C.H. Hsu, P.H. Li, Y.C. Changd, Synth. Met. 160 (2010) 1609-1616. https://doi.org/10.1016/j.synthmet.2010.05.023
  13. P. Martins, C.M. Costa, M. Benelmekki, M.S. Lanceros, J. Nanosci. Nanotechnol. 12 (2012) 6845-6849. https://doi.org/10.1166/jnn.2012.4543
  14. Y. Mosqueda, E.P. Cappe, J. Arana, E. Longo, A. Ries, M. Cilense, P.A.P. Nascente, J. Solid State Chem. 179 (2006) 308-314. https://doi.org/10.1016/j.jssc.2005.09.030
  15. Z. Jia, W. Yujun, L. Yangcheng, M. Jingyu, L. Guangsheng, React. Funct. Polym. 66 (2006) 1552-1558. https://doi.org/10.1016/j.reactfunctpolym.2006.05.006
  16. Y.P. Fu, Y.D. Yao, C.S. Hsu, J. Alloys Compd. 421 (2006) 136-140. https://doi.org/10.1016/j.jallcom.2005.08.089
  17. V. Verma, R.K. Kotnala, V. Pandey, P.C. Kothari, L. Radhapiyari, B.S. Matheru, J. Alloys Compd. 466 (2008) 404-407. https://doi.org/10.1016/j.jallcom.2007.11.056
  18. J. Singh, P.K. Dutta, Int. J. Biol. Macromol. 45 (2009) 384-392. https://doi.org/10.1016/j.ijbiomac.2009.07.004
  19. G. Molinaro, J.C. Leroux, J. Damas, A. Adam, Biomaterials 23 (2002) 2717-2722. https://doi.org/10.1016/S0142-9612(02)00004-2
  20. H. Gong, Y. Zhong, J. Li, Y. Gong, N. Zhao, X. Zhang, J. Biomed. Mater. Res. 52 (2000) 285-295. https://doi.org/10.1002/1097-4636(200011)52:2<285::AID-JBM7>3.0.CO;2-G
  21. J. Singh, P. Kalita, M.K. Singh, B.D. Malhotra, Appl. Phys. Lett. 98 (2011) 123702-123704. https://doi.org/10.1063/1.3553765
  22. P.K. Dutta, M.N.V. Ravikumar, J. Dutta, J.M.S. Polym. Rev. C 42 (2002) 307-354.
  23. J.E. Santos, E.R. Dockal, E.T.G. Cavalheiro, Carbohydr. Polym. 60 (2005) 277-282. https://doi.org/10.1016/j.carbpol.2004.12.008
  24. H.K. No, S.P. Meyers, W. Prinyawiwatkul, Z. Xu, J. Food Sci. 72 (2007) 87-100.
  25. D. Brito, S.P.C. Filho, Polym. Degrad. Stab. 84 (2004) 353-361. https://doi.org/10.1016/j.polymdegradstab.2004.02.005
  26. P.K. Dutta, S. Tripathi, G.K. Mehrotra, J. Dutta, Food Chem. 114 (2009) 1173-1182. https://doi.org/10.1016/j.foodchem.2008.11.047
  27. J. Singh, M. Srivastava, J. Dutta, P.K. Dutta, Int. J. Biol. Macromol. 48 (2011) 170-176. https://doi.org/10.1016/j.ijbiomac.2010.10.016
  28. K. Hayashi, W. Sakamoto, T. Yogo, J. Mater. Res. 22 (2007) 974-981. https://doi.org/10.1557/jmr.2007.0113
  29. R. Qin, F. Li, W. Jiang, M. Chen, Mater. Chem. Phys. 122 (2010) 498-501. https://doi.org/10.1016/j.matchemphys.2010.03.033
  30. D. Yuping, W. Guangli, L. Xiaogang, J. Zhijiang, L. Shunhua, L. Weiping, Solid State Sci. 12 (2010) 1374-1381. https://doi.org/10.1016/j.solidstatesciences.2010.05.013
  31. X. Lu, W. Zhang, C. Wang, T.C. Wen, Y. Wei, Prog. Polym. Sci. 36 (2011) 671-712. https://doi.org/10.1016/j.progpolymsci.2010.07.010
  32. T.H. Ting, R.P. Yu, Y.N. Jau, Mater. Chem. Phys. 126 (2011) 364-368. https://doi.org/10.1016/j.matchemphys.2010.11.011
  33. P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.V.R.N. Rao, Curr. Appl. Phys. 9 (2009) 165-171. https://doi.org/10.1016/j.cap.2008.01.006
  34. A. Uygun, O. Turkoglu, S. Sen, E. Ersoy, A.G. Yavuz, G.G. Batir, Curr. Appl. Phys. 9 (2009) 866-871. https://doi.org/10.1016/j.cap.2008.08.005
  35. R. Patil, A.S. Roy, K.R. Anilkumar, K.M. Jadhav, S. Ekhelikar, Compos. Part B Eng. 43 (2012) 3406-3411. https://doi.org/10.1016/j.compositesb.2012.01.090
  36. G.G. kumar, A.R. Kim, K.S. Nahm, D.J. Yoo, Curr. Appl. Phys. 11 (2011) 896-902. https://doi.org/10.1016/j.cap.2010.12.015
  37. V. Balan, M.I. Popa, L. Verestiuc, A.P. Chiriac, I. Neamtu, L.E. Nita, M.T. Nistor, Compos Part B Eng. 43 (2012) 926-932.
  38. M. Srivastava, A.K. Ojha, S. Chaubey, P.K. Sharma, A.C. Pandey, Mater. Sci. Eng. B 175 (2010) 14-21. https://doi.org/10.1016/j.mseb.2010.06.005
  39. M. Srivastava, N. Vyas, A.K. Ojha, Vib. Spectrosc. 56 (2011) 19-25. https://doi.org/10.1016/j.vibspec.2010.11.001
  40. C. Sun, K. Sun, Solid State Commun. 141 (2007) 258-261. https://doi.org/10.1016/j.ssc.2006.10.039
  41. Y.P. Fu, S.B. Wen, C.C. Yen, Ceram. Int. 35 (2009) 943-947. https://doi.org/10.1016/j.ceramint.2008.03.013
  42. S.A. Mazen, S.F. Mansour, E. Dhahri, H.M. Zaki, T.A. Elmosalami, J. Alloys Compd. 470 (2009) 294-300. https://doi.org/10.1016/j.jallcom.2008.02.035
  43. M. Naeem, S.K. Hasanain, A. Mumtaz, J. Phys. Condens. Matter 20 (2008) 025210. https://doi.org/10.1088/0953-8984/20/02/025210
  44. M. Srivastava, S. Layek, J. Singh, A.K. Das, H.C. Verma, A.K. Ojha, N.H. Kim, J.H. Lee, J. Alloys Compd. 591 (2014) 174-180. https://doi.org/10.1016/j.jallcom.2013.12.180
  45. R.M. Khafagy, J. Alloys Compd. 509 (2011) 9849-9857. https://doi.org/10.1016/j.jallcom.2011.07.008
  46. X. Ding, D. Han, Z. Wang, X. Xu, L. Niu, Q. Zhang, J. Colloid. Interface Sci. 320 (2008) 341-345. https://doi.org/10.1016/j.jcis.2008.01.004
  47. G. Sui, B. Li, G. Bratzel, L. Baker, W.H. Zhong, X.P. Yang, Soft Matter 5 (2009) 3593-3598. https://doi.org/10.1039/b904030g
  48. S.M. Abbas, M. Chandra, A. Verma, R. Chatterjee, T.C. Goel, Compos. Part A 37 (2006) 2148-2154. https://doi.org/10.1016/j.compositesa.2005.11.006
  49. L.A. Ramajo, A.A. Cristobal, P.M. Botta, J.M.P. López, M.M. Reboredo, M.S. Castro, Compos. Part A 40 (2009) 388-393. https://doi.org/10.1016/j.compositesa.2008.12.017
  50. C.R. Indulal, R. Raveendran, Indian J. Pure Appl. Phys. 48 (2010) 121-126.
  51. L. Ai, J. Jiang, L. Li, J. Mater. Sci. Mater. Electron. 21 (2010) 206-210. https://doi.org/10.1007/s10854-009-9885-4
  52. N. Frickel, M. Gottlieb, A.M. Schmidt, Polymer 52 (2011) 1781-1787. https://doi.org/10.1016/j.polymer.2011.02.025
  53. K.L. Gordon, J.H. Kang, C. Park, P.T. Lillehei, J.S. Harrison, J. Appl. Polym. Sci. 125 (2012) 2977-2985. https://doi.org/10.1002/app.36248
  54. A.B. Selcuk, S.B. Ocak, O.F. Yuksel, Nucl. Instrum. Methods Phys. Res. A 594 (2008) 395-399. https://doi.org/10.1016/j.nima.2008.05.022
  55. H.M. Chenari, M.M. Golzan, H. Sedghi, A. Hassanzadeh, M. Talebian, Curr. Appl. Phys. 11 (2011) 1071-1076. https://doi.org/10.1016/j.cap.2011.01.038
  56. A. Tataroglu, S. Altındal, M.M. Bulbul, Microelectron. Eng. 81 (2005) 140-149. https://doi.org/10.1016/j.mee.2005.04.008
  57. I.M. Afandiyeva, I. Dokme, S. Altındal, M.M. Bulbul, A. Tataroglu, Microelectron. Eng. 85 (2008) 247-252. https://doi.org/10.1016/j.mee.2007.05.044
  58. M. Srivastava, J. Singh, M. Yashpal, Animesh K. Ojha, J. Nanosci. Nanotechnol. 12 (2012) 6248-6257. https://doi.org/10.1166/jnn.2012.6454
  59. A.A.A. Darwish, E.F.M. El-Zaidia, M.M. El-Nahass, T.A. Hanafy, A.A. Al-Zubaidi, J. Alloys Compd. 589 (2014) 393-398. https://doi.org/10.1016/j.jallcom.2013.11.218

Cited by

  1. Temperature and frequency dependence of electromagnetic properties of sintering Li-Zn ferrites with nano SiO2 additive vol.384, pp.None, 2014, https://doi.org/10.1016/j.jmmm.2015.02.053
  2. Study of electrical properties of biocomposites containing ferroelectric nanoparticles vol.51, pp.14, 2014, https://doi.org/10.1177/0021998316665454
  3. Structural Characterization and Dielectric Studies of Superparamagnetic Iron Oxide Nanoparticles vol.55, pp.3, 2014, https://doi.org/10.4191/kcers.2018.55.3.02
  4. Structural and Electrical Dependence in Zn-Doped Li-Ferrite Nanostructures vol.32, pp.9, 2014, https://doi.org/10.1007/s10948-019-5015-6