DOI QR코드

DOI QR Code

Assessing the Performance of CMIP5 GCMs for Various Climatic Elements and Indicators over the Southeast US

다양한 기후요소와 지표에 대한 CMIP5 GCMs 모델 성능 평가 -미국 남동부 지역을 대상으로-

  • Hwang, Syewoon (Dept. of Agricultural eng., (Institute of Agriculture and Life Science), Gyeongsang Nat. Univ.)
  • 황세운 (경상대학교 농업생명과학대학 지역환경기반공학과, 경상대학교 농업생명과학연구원)
  • Received : 2014.09.01
  • Accepted : 2014.10.13
  • Published : 2014.11.30

Abstract

The goal of this study is to demonstrate the diversity of model performance for various climatic elements and indicators. We evaluated the skills of the most advanced 17 General Circulation Models (GCMs) i.e., CMIP5 (Climate Model Inter-comparison project, phase 5) climate models in reproducing retrospective climatology from 1950 to 2000 over the Southeast US for the key climatic elements important in the hydrological and agricultural perspectives (i.e., precipitation, maximum and minimum temperature, and wind speed). The biases of raw CMIP5 GCMs were estimated for 16 different climatic indicators that imply mean climatology, temporal variability, extreme frequency, etc. using a grid-based observational dataset as reference. Based on the error (RMSE) and correlation (R) of GCM outputs, the error-based GCM ranks were assigned on average over the indicators. Overall, the GCMs showed much better accuracy in representing mean climatology of temperature comparing to other elements whereas few GCM showed acceptable skills for precipitation. It was also found that the model skills and ranks would be substantially different by the climatic elements, error statistics applied for evaluation, and indicators as well. This study presents significance of GCM uncertainty and the needs of considering rational strategies for climate model evaluation and selection.

본 연구에서는 전지구 기후모델의 성능을 평가함에 있어 기후 요소와 평가 지표에 따른 분석 결과의 다양성에 대해 살펴보고자 하였다. 미국 남동부 지역을 대상으로 17개의 CMIP5 GCM의 강우량, 일 최대 최저기온, 풍속에 대한 과거기간(1950~2000)의 모의 결과를 같은 기간의 관측치와 비교한 오차와 상관도를 이용하여 정량적으로 평가하였다. 기후 모델 산출물을 효과적으로 분석하기 위해 격자 단위 관측 자료를 평가기준으로 사용하였으며 다양한 형태의 기상 특성에 대한 모의 성능을 다각적으로 진단하기 위해 기후 정보(평균적 기후 통계량, 시간 변동성, 극한 사상 빈도 등)를 16개 지표로 정의하여 평가에 적용하였다. 또한 산정된 오차와 상관도를 기반으로 대상지역에 대한 기후요소별 GCM 성능 순위를 도출하여 비교하였다. 연구 결과, 기온에 대한 기후 특성에 대한 모델 재현성은 전반적으로 뛰어난 반면 강우량 및 풍속에 대한 모델 성능은 일 변동성을 제외한 대부분 지표들에 대해 비교적 낮은 것으로 나타났다. 더불어 모델의 정확도 순위는 기후 요소, 평가 지표, 그리고 오차 산정 방법에 따라 다양하게 나타남을 확인하였다. 특히 IPSL-CM5A-LR 모델은 대상지역에 대한 적용성이 현저히 낮은 것으로 나타났다. 본 연구는 다양한 기후변화 영향 연구에 적합한 모델 선정과 기후 모델의 불확실성을 고려한 합리적 미래 예측을 위해서는 다각적이고 면밀한 모델 평가가 선행되어야 함을 시사한다.

Keywords

References

  1. Bae, D.H., Jung, I.W., Lee, B.J., and Lee, M.H. (2011). "Future Korean Water Resources Projection Considering Uncertainty of GCMs and Hydrological Models." Journal of Korea Water Resources Association, Vol. 44, No. 5, pp. 389-406. https://doi.org/10.3741/JKWRA.2011.44.5.389
  2. Gleckler, P.J., Taylor, K.E., and Doutriaux, C. (2008) "Performance metrics for climate model." Journal of Geophysical Research, Vol. 113, D6104, doi:10.1029/2007JD008972
  3. Hwang, S. (2012). "Utility of Gridded Observations for Statistical Bias-Correction of Climate Model Outputs and its Hydrologic Implication over West Central Florida." Journal of the Korean Society of Agricultural Engineers, Vol. 54, No. 5, pp. 91-102. https://doi.org/10.5389/KSAE.2012.54.5.091
  4. Hwang, S., and Graham, W.D. (2011). "Quantitative Spatiotemporal Evaluation of Dynamically Downscaled MM5 Precipitation Predictions over the Tampa Bay Region, Florida." Journal of Hydrometeorology, Vol. 12, pp. 1447-1464. https://doi.org/10.1175/2011JHM1309.1
  5. Hwang, S., Graham, W.D., Geurink, J.S., and Alison, A. (2014). "Hydrologic implications of errors in biascorrected regional reanalysis data for west central Florida." Journal of Hydrology, Vol. 510, pp. 513-529. https://doi.org/10.1016/j.jhydrol.2013.11.042
  6. Hwang, S., Hue, Y., and Chang, S.W. (2013). "Uncertainty in Regional Climate Change Impact Assessment using Bias-Correction Technique for Future Climate Scenarios." Journal of the Korean Society of Agricultural Engineers, Vol. 55 No. 4, pp. 95-106. https://doi.org/10.5389/KSAE.2013.55.4.095
  7. IPCC. (1990). Climate Change: The IPCC Scientific Assessment, Edited by Houghton, J.T., Jenkins, G.J., and Ephraums, J.J., Cambridge University Press, Cambridge, UK.
  8. Kim, C.-R., Kim, Y.-O., Seo, S.B., and Choi, S.-W. (2013). "Water Balance Projection Using Climate Change Scenarios in the Korean Peninsula." Journal of Korea Water Resources Association, Vol. 46, No. 8, pp. 807-819. https://doi.org/10.3741/JKWRA.2013.46.8.807
  9. Maurer, E.P., Wood, A.W., Adam, J.C., Lettenmaier, D.P., and Nijssen, B. (2002). "A Long-Term Hydrologically-Based Data Set of Land Surface Fluxes and States for the Conterminous United States." Journal of Climate, Vol. 15, pp. 3237-3251. https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2
  10. Milly, P.C., Betancourt, D.J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier, D.P., and Stouffer, R.J. (2008). "Stationarity Is Dead-Whither Water Management?."Science, Vol. 319, pp. 573-574. https://doi.org/10.1126/science.1151915
  11. Palutikof, J.P., Winkler, J.A., Goodess, C.M., and Andresen, J.A. (1997). "The simulation of daily temperature time series from GCM output. Part 1: comparison of model data with observations." Journal of Climate, Vol. 10, pp. 2497-2513. https://doi.org/10.1175/1520-0442(1997)010<2497:TSODTT>2.0.CO;2
  12. Park, J., Kwon, J.-H., Kim, T., and Heo, J.-H. (2014). "Future Inflow Simulation Considering the Uncertainties of TFN Model and GCMs on Chungju Dam Basin." Journal of Korea Water Resources Association, Vol. 47, No. 2, pp. 135-143. https://doi.org/10.3741/JKWRA.2014.47.2.135
  13. Shon, T.S., Lee, S.D., Kim, S.D., and Shin, H.S. (2010). "An Analysis of the Effect of Climate Change on Flow in Nakdong River Basin Using Watershed-Based Model." Journal of Korea Water Resources Association, Vol. 43, No. 10, pp. 865-881. https://doi.org/10.3741/JKWRA.2010.43.10.865
  14. Sohn, K.H., Bae, D.H., and Ahn, J.H. (2014). "Projection and Analysis of Drought according to Future Climate and Hydrological Information inKorea." Journal of KoreaWater Resources Association, Vol. 47, No. 1, pp. 71-82. https://doi.org/10.3741/JKWRA.2014.47.1.71
  15. Taylor, K.E. (2001). "Summarizing multiple aspects of model performance in a single diagram." Journal of Geophysical Research, Vol. 106, pp. 7183-7192, (also see PCMDI Report 55, http://wwwpcmdi.llnl.gov/publications/ab55.html) https://doi.org/10.1029/2000JD900719
  16. Temba, N., and Chung, S.-O. (2014). "Uncertainty of Hydro-meteorological predictions due to climate change in the republic of Korea." Journal of Korea Water Resources Association, Vol. 47, No. 3, pp. 257-267. https://doi.org/10.3741/JKWRA.2014.47.3.257
  17. Yun, D.K., Chung, S.O., and Kim, S.J. (2011). "Climate change impacts on paddy requirement." Journal of the Korean Society of Agricultural Engineers, Vol. 53, No. 4, pp. 39-47. https://doi.org/10.5389/KSAE.2011.53.4.037

Cited by

  1. The Uncertainty of Extreme Rainfall in the Near Future and its Frequency Analysis over the Korean Peninsula using CMIP5 GCMs vol.48, pp.10, 2015, https://doi.org/10.3741/JKWRA.2015.48.10.817
  2. Performance Evaluation of CMIP5 GCMs using CSEOF Analysis vol.16, pp.1, 2016, https://doi.org/10.9798/KOSHAM.2016.16.1.265
  3. Assessing the Climate Change Impacts on Agricultural Reservoirs using the SWAT model and CMIP5 GCMs vol.57, pp.5, 2015, https://doi.org/10.5389/KSAE.2015.57.5.001
  4. Uncertainty Characteristics in Future Prediction of Agrometeorological Indicators using a Climatic Water Budget Approach vol.57, pp.2, 2015, https://doi.org/10.5389/KSAE.2015.57.2.001
  5. Comparison of GCM Precipitation Predictions with Their RMSEs and Pattern Correlation Coefficients vol.10, pp.1, 2018, https://doi.org/10.3390/w10010028