DOI QR코드

DOI QR Code

Numerical Simulation on Seawater Intrusion in Coastal Aquifer using N-S Solver Based on Porous Body Model

PBM (Porous Body Model) 기반의 N-S Solver를 이용한 해안대수층의 해수침투모의

  • Lee, Woo-Dong (Institute of Marine Industry, Gyeongsang National University) ;
  • Jeong, Yeong-Han (Department of Oceanographic Survey, Geosystem Research Corporation) ;
  • Hur, Dong-Soo (Department of Ocean Civil Engineering, Gyeongsang National University)
  • 이우동 (경상대학교 해양산업연구소) ;
  • 정영한 ((주)지오시스템리서치 해양조사부) ;
  • 허동수 (경상대학교 해양토목공학과)
  • Accepted : 2015.10.23
  • Published : 2015.12.31

Abstract

This study applies 3-D N-S solver based on PBM (Porous Body Model), LED-WASS-3D ver 2.0 to directly analyze non-linear interaction of seawater-freshwater-coastal aquifer in order to simulate the seawater infiltration into coastal aquifer. This numerical simulation is the first trial in Korea, as well as unusual and new numerical analysis abroad. Firstly, to validate the applied numerical model, the validity and effectiveness was verified for the numerical model by comparing and considering it with the result of laboratory experiment for seawater-freshwater interface in coastal aquifer. And then it simulated the seawater infiltration into coastal aquifer considering the changed levels of seawater and groundwater in order to analyze the distribution characteristics of flow field and seawater-freshwater interface of coastal aquifer as the level difference between seawater and groundwater and rate of seawater level (${\Delta}h/h$) increased. In addition, the characteristics of seawater infiltration were analyzed from the vertical salinity in the coastal aquifer by ${\Delta}h/h$, which cannot be obtained from existing non-diffusion numerical models. Finally, it analyzed the effect of ${\Delta}h/h$ on the seawater infiltration distance in coastal aquifer, which was indexed.

본 연구에서는 해수-담수-해안대수층의 비선형 상호작용을 직접 해석할 있는 PBM(Porous Body Model) 기반의 3차원 N-S Solver인 LES-WASS-3D ver 2.0을 적용하며, 해안대수층의 해수침투모의를 수행하였다. 이와 같은 N-S Solver를 적용한 해안대수층의 해수침투모의는 국내 최초 수행되는 것일 뿐만 아니라, 국외적으로도 찾아보기 어려운 새로운 수치해석방법이라고 할 수 있다. 먼저 적용하는 수치모델을 검증하기 위하여 해안대수층의 해수-담수 경계면에 관한 수리모형실험결과와 비교 검토하여 수치모델의 타당성 및 유효성을 확인하였다. 그리고 해수위 및 지하수위 변화를 고려한 해안대수층 내의 해수침투모의를 수행하여 해수위-지하수위 차와 해수위의 비(${\Delta}h/h$)의 증가에 따른 해안대수층 내의 유동장 그리고 해수-담수 경계면 분포 특성에 관하여 논의하였다. 또한 기존의 비확산 수치모델에서 도출할 수 없었던, ${\Delta}h/h$에 따른 해안대수층 내의 연직 염분농도로 부터 해수침투 특성을 파악하였으며, 최종적으로 지표화 할 수 있는 ${\Delta}h/h$가 해안대수층 내의 해수침투거리에 미치는 영향에 대하여 분석하였다. 이 결과로부터 ${\Delta}h/h$가 작을수록 해안대수층 내의 해수침투가 약해지는 메커니즘을 이해할 수 있었다.

Keywords

References

  1. Ataie-Ashtiani, B., Volker, R.E., and Lockington, D.A. (1999). "Tidal effects on sea water intrusion in unconfined aquifers." Journal of Hydrology, Vol. 216, pp. 17-31. https://doi.org/10.1016/S0022-1694(98)00275-3
  2. Barlow, P.M. (2003). "Groundwater in freshwater- saltwater environments of the Atlantic coast." USGS Circular 1262.
  3. Bear, J., Cheng, A.H.-D., Sorek, S., Ouazar, D., and Herrera, I. (1999). "Seawater intrusion in coastal aquifers- concepts, methods, and practices. Dordrecht, The Netherlands, Kluwer Academic Publishers, 625 p.
  4. Brackbill, J.U., Kothe, D.B., and Zemach, C. (1992). "A continuum model for modeling surface tension." J. Comp. Phys., Vol. 100, pp. 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  5. Ergun, S. (1952). "Fluid flow through packed columns." Chemical Eng., Vol. 48, No. 2, pp. 89-94.
  6. Germano, M., Piomelli, U., Moin, P., and Cabot, W.H. (1991). "A dynamic subgrid-scale eddy viscosity model." Physics of Fluids, Vol. 3, pp. 1760-1765. https://doi.org/10.1063/1.857955
  7. Gill, A.E. (1982). "Atmosphere-ocean dynamics." New York, Academic Press.
  8. Glover, R.E. (1959). "The pattern of fresh-water flow in a coastal aquifer." Journal of Geophysical Research, Vol. 64, No. 4, pp.457-459. https://doi.org/10.1029/JZ064i004p00457
  9. Goswami R.R., and Clement, T.P. (2007). "Laboratoryscale investigation of saltwater intrusion dynamics." Water Resources Research, Vol. 43, W04418, doi:10.1029/2006WR005151.
  10. Gregg, M.C. D'Asaro, E.A., Shay, T.J., and Larson, N. (1986). "Observations of persistent mixing and nearinertial internal waves." J. Phys. Oceanogr., Vol. 16, pp. 856-885. https://doi.org/10.1175/1520-0485(1986)016<0856:OOPMAN>2.0.CO;2
  11. Henry, H.R. (1959). "Salt water intrusion into fresh water aquifers." Journal of Geophysical Research, Vol. 64, pp.1911-1919. https://doi.org/10.1029/JZ064i011p01911
  12. Hong, S.H., Shi, L., Cui, L., and Park, N.S. (2009). "Artificial injection to control saltwater intrusion in groundwater- numerical study on a vertical cross section." The Journal of Engineering Geology, Vol. 19, No. 2, pp. 131-138.
  13. Hur, D.S., Lee, W.D., and Cho, W.C. (2012). "Threedimensional flow characteristics around permeable submerged breakwaters with open inlet." Ocean Eng., Vol. 44, pp. 100-116. https://doi.org/10.1016/j.oceaneng.2012.01.029
  14. Jung, E.T., Lee, S.J., Lee, M.J., and Park, N.S. (2014). "Effectiveness of double negative barriers for mitigation of seawater intrusion in coastal aquifer: sharp-interface modeling investigation." Journal of Korea Water Resources Association, Vol. 47, No. 11, pp. 1087-1094. https://doi.org/10.3741/JKWRA.2014.47.11.1087
  15. Kim, J.Y., Oh, Y.K., and Ryu, S.P. (2001). "Study on the salinization in groundwater of the eastern area of Cheju island." Journal of the Environmental Sciences, Vol. 10, No. 1, pp. 47-58.
  16. Kim, K.Y., Lee, C.W., Kim, Y.J., Kim, T.H., and Woo, N.C. (2004). "Water-level fluctuation due to groundwatersurface water interaction in coastal aquifers." Journal of Soil and Groundwater Environment, Vol. 9, No. 4, pp. 32-41.
  17. Kim, S.S. (2009). "The variation of seawater/freshwater interface with the tide at the coastal aquifer of the Yongho Bay in Busan." Master's Thesis, Pukyong National University, Korea
  18. Konikow, L.F., Goode, D.J., and Hornberger, G.Z. (1996). "A three-dimensional method-of-characteristics solutetransport model (MOC3D)." U.S.G.S., Water-Resources Investigations Report 96-4267.
  19. Lee, W.D., and Hur, D.S. (2014). "Development of 3-d hydrodynamical model for understanding numerical analysis of density current due to salinity and temperature and its verification." Journal of the Korean Society of Civil Engineers, Vol. 34, NO. 3, pp. 859-871. https://doi.org/10.12652/Ksce.2014.34.3.0859
  20. Lilly, D.K. (1991). "A proposed modification of the Germano subgrid-scale closure method." Phy. Fluids, Vol. 4, pp. 633-635.
  21. Liu, S., and Masliyah, J.H. (1999). "Non-linear flows porous media." J. Non-Newtonian Fluid Mech., Vol. 86, pp. 229-252. https://doi.org/10.1016/S0377-0257(98)00210-9
  22. Lu, C., Chen, Y., Zhang., and Luo, Z. (2013). "Steady-state freshwater-seawater mixing zone in stratified coastal aquifers." Journal of Hydrology, Vol. 505, pp. 24-34. https://doi.org/10.1016/j.jhydrol.2013.09.017
  23. Mellor, G.L., and Yamada, M. (1982). "Development of a turbulence closure model for geophysical fluid problems." Rev. Geophys., Vol. 20, pp. 851-875. https://doi.org/10.1029/RG020i004p00851
  24. Oh, Y.K., Kim, K.H., and Ryu, S.P. (2000). "Physicochemical characteristics of groundwater salinization in the eastern area of Cheju island." Journal of the Environmental Sciences, Vol. 9, No. 3, pp. 253-259.
  25. Oude Essink, G.H.P. (2001). "Salt water intrusion in a three-dimensional groundwater system in the Netherlands: a numerical study." Transport in Porous Media, Vol. 43, pp. 137-158. https://doi.org/10.1023/A:1010625913251
  26. Park, H.J., Kim, W.I., Ho, J.S., and Ahn, W.S. (2009). "Experimental study to parameterize salt-wedge formations in coastal aquifer." Journal of Korea Water Resources Association, Vol. 42, No. 11, pp. 1005-1015. https://doi.org/10.3741/JKWRA.2009.42.11.1005
  27. Park, N.S. (1995). "Quantitative analysis for the effects of hydraulic variables on the formation of freshwatersaltwater transition zones in aquifers." Magazine of Korea Water Resources Association, Vol. 28 No. 2, pp. 137-143.
  28. Peters, F., Gregg, M.C., and Toole, J.M. (1988). "On the parameterization of equatorial turbulence." J. Geophys. Res., Vol. 93, pp. 1199-1218. https://doi.org/10.1029/JC093iC02p01199
  29. Riley, J.P., and Skirrow, G. (1965). "Chemical oceanography." Vol. 3, Academic Press.
  30. Sakakiyama, T., and Kajima, R. (1992). "Numerical simulation of nonlinear wave interacting with permeable breakwater." Proc. 23rd Int. Conf. on Coastal Eng., ASCE, Venice, pp. 1531-1544.
  31. Shim, B.O., and Chung, S.Y. (2003). "Estimation of the interface of seawater intrusion in a coastal aquifer system with SHARP model." Journal of Soil and Groundwater Environment, Vol. 8 No. 1, pp. 68-74.
  32. Shim, B.O., and Lee, C.W. (2011). "Hydrologic characterization through ground water monitoring in a coastal aquifer." Economic and Environmental Geology, Vol. 44, No. 3, pp. 239-246. https://doi.org/10.9719/EEG.2011.44.3.239
  33. Shin, I.H., Park, C.Y., Ahan, K.S., and Jeong, Y.J. (2002). "Hydrogeochemistry of groundwaters at the Gogum island area in Jeonnam, Korea." Journal of the Korean Earth Science Society, Vol. 23, No. 6, pp. 474-485.
  34. Smagorinsky, J. (1963). "General circulation experiments with the primitive equation." Mon. Weath. Rev., Vol. 91, No. 3, pp. 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  35. Strack, O.D.L. (1976). "A single potential solution for regional interface problems in coastal aquifers." Water Resources Research, Vol. 12, pp. 1165-1174. https://doi.org/10.1029/WR012i006p01165
  36. Suh, S.K., Oh, C.M., Kim, W.I., and Ho, J.S. (2010). "Experimental study of freshwater discharge and saltwater intrusion control in coastal aquifer." Journal of the Korean Society of Hazard Mitigation, Vol. 10, No. 5, pp. 159-168.
  37. Werner, A.D., and Simmons, C.T. (2009). "Impact of sealevel rise on sea water intrusion in coastal aquifers." Ground Water, Vol. 47, No. 2, pp. 197-204. https://doi.org/10.1111/j.1745-6584.2008.00535.x
  38. Wood, C, Harrington, G.A. (2015). "Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland." Ground Water, Vol. 53 pp. 90-98. https://doi.org/10.1111/gwat.12168