DOI QR코드

DOI QR Code

매입말뚝공법의 충전재료로 사용되는 시멘트밀크의 공학적 특성

Engineering Characteristics of Cement Milk for Bored Piles

  • 도종남 (한국도로공사 도로교통연구원 구조물연구실) ;
  • 남문석 (한국도로공사 도로교통연구원 구조물연구실) ;
  • 심재원 (한국도로공사 도로교통연구원 안전연구실) ;
  • 박영호 (한국도로공사 도로교통연구원 안전연구실) ;
  • 이승준 (한국도로공사 도로교통연구원 안전연구실)
  • 투고 : 2015.09.14
  • 심사 : 2015.12.08
  • 발행 : 2015.12.31

초록

본 연구에서는 매입말뚝공법의 충전재료로 사용하는 시멘트밀크의 공학적 특성 시험을 실시하였다. 이를 위해 고속도로공사 전문시방서에서 사용하고 있는 표준공시체를 기준으로 다양한 물/시멘트 비율로 공시체를 제작하였다. 또한, 재령일에 따른 일축압축강도, 점하중강도, 탄성계수, 그리고 포아송비 시험을 실시하였다. 시험결과 물/시멘트 비의 변화에 따른 시멘트밀크의 표준 공시체 제작을 위한 주입높이를 제시하였다. 재령 7일과 28일에 대한 일축압축강도와 점하중강도와의 비인 시멘트밀크의 상관계수, K는 각각 $K_7=4.55{\sim}13.65$$K_{28}=5.28{\sim}16.84$ 이었다. 재령일과 무관하게 물/시멘트 비가 65~150%일 때 탄성계수와 포아송비의 증감은 크게 나타났고, 150~300%는 상대적으로 매우 작게 나타났다. 마지막으로 재령별 물/시멘트 비에 따른 시멘트밀크의 일축압축강도, 점하중강도, 일축압축강도와 점하중강도와의 상관계수, 탄성계수, 포아송비의 식을 제안하였다.

In this study, engineering property tests were conducted for cement milk used as a filling materials in the bored piles method. For this purpose, various water/cement ratio specimens were produced on the basis of standard specimen specified in highway corporation specifications. The unconfined compressive strength, point load strength, elasticity modulus, poisson's ratio test was performed according to the age. As a test result, injection height for productions of cement milk specimens was defined ratios. Correlation coefficient K of the unconfined compressive strength and point load strength were $K_7=4.55{\sim}13.65$ in age 7 days, and $K_{28}=5.28{\sim}16.84$ in age 28 days. When water / cement ratio is 65-150%, the elastic modulus and Poisson's ratio significantly increased and decreased regardless of age. In addition, the formulae were proposed for unconfined compressive strength, point load strength, a correlation coefficient of unconfined compressive strength, point load strength, elastic modulus, and poisson's ratio for each age.

키워드

참고문헌

  1. ASTM (1995), "Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression", C 469, American Society for Testing and Materials, Philadelphia, Pennsylvania.
  2. ASTM (1995), "Test Method for Determination of the Point Load Strength Index of Rock", D 5731-95, Vol.04.08, American Society for Testing and Materials, Philadelphia, Pennsylvania.
  3. ASTM (1995), "Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens", D 2938-95, Vol.04.08, American Society for Testing and Materials, Philadelphia, Pennsylvania.
  4. Bieniawski ZT (1975), "The Point Load Test in Geotechnical Practice", Eng. Geol., Sept., pp.1-11.
  5. Broch E and Franklin JA (1972), "The Point Load Strength Test", Intional Journal of Rock Mechanics, Min. Sci 9, pp.669-697. https://doi.org/10.1016/0148-9062(72)90030-7
  6. Carter PG and Snedden M (1977), "Comparison of Schmidt Hammer, Point Load and Unconfined Compression Tests in Carboniferous Strata", Proceeding of a Conference on Rock Engineering, University of New Castle, Tyne, England, pp.197-210.
  7. Das BM (1985), "Evaluation of the Point Load Strength for Soft Rock Classification", Proceeding of the 4th International Conference on Ground Control in Mining, Morgantown, WV, pp.220-226.
  8. Duff A. Abrams (1918), "Design of Concrete Mixtures", Structrural Materials Research Laboratory Lewis Institute, Chicago, pp.3-5.
  9. Hawkins, A. B. and Olver, J. A. G. (1986), "Point Load Test : Correlation Factors and Contractual use an Example from the Corallian at Weymouth", Geological Society Publication, No.2, pp.269-271.
  10. Hong, W. P., Lee, J. H., and Chae, S. K. (2008), "Bearing Capacity of SDA Augered Piles in Various Grounds Depending on Water-Cement Ratio of Cement Milk", Journal of Korean Geotechnical Society, Vol.24, No.5, pp.37-54.
  11. Japan Concrete Piles Construction Technology Association (2002), "Strength Test Method of Side Fixing Materials and Tip Fixing Materials for Bored Piles", Japan Concrete Piles Construction Technology Association, pp.1-8.
  12. Japan Geotechnical Engineering Association (1983), "From Foundation Investigation and Design to the Construction-The Soil and Foundation Series", Sammi Printing Co. Ltd., Tokyo, pp.407-453.
  13. Jermy CA and Bell FG (1991), "Coal Bearing Strata and the Stability of Coal Mines in South Africa", Proceedings of the 7th Intl. Cong. on Rock Mech. Intl. Soc. Rock Mech., Aachen, Germany, pp.1125-1131.
  14. Jung, H. S., Lim, H. S., and Kim, J. S. (2003), "Suggestion of Evaluation Formula for Skin Resistance of SIP", Journal of Korean Geo-Environmental Society, Vol.4, No.1, pp.59-66.
  15. Korea Expressway Corporation (2012), "Standard Specifications for Highway Construction", Civil Engineering, Korea Expressway Corporation, pp.6-19-6-20
  16. Lee, S., Park, J. H., Park, J. B., and Kim, T. H. (2002), "A Study on the Characteristics of Bearing Capacity for SIP Piles in Domestic Areas", Journal of Korean Geotechnical Society, Vol.18, No.4, pp.319-327.
  17. Lim, H. S., Park, Y. B., and Park, J. B. (2002), "Investigation of Characteristics and Suggestion of Evaluation Formulae for Skin Resistance of SIP", Journal of Korean Geo-Environmental Society, Vol.3, No.2, pp.15-21.
  18. O'Rourke JE (1988), "Rock Index Properties for Geoengineering Design in Underground Development", SME preprint, pp.88-48.
  19. Ministry of Land, Infrastructure and Transport (2012), "Criteria of Concrete Structures", Ministry of Land, Infrastructure and Transport, p.63.
  20. Park, J. B. (2004), "A Study on Strength and Friction Behavior of Cement Paste for Auger Cast Pile", Journal of Korean Geo-Environmental Society, Vol.5, No.3, pp.31-39.
  21. Park, J. B., Kim, J. S., Lim, H. S. (2004), "Study on the Bearing Capacity Evaluation of Pile Constructed by Enhanced SIP Criteria", Journal of Korean Geo-Environmental Society, Vol.5, No.3, pp.5-15.
  22. Park, Y. H. (2004), "A Study of Design and Construction of SIP Method", Korea Expressway Corporation Research Institute, pp. 138-152, pp.347-365.
  23. Park, Y. H., Kim, S. H., Kim, N. Y., and Yook, J. H. (2009), "Practical Foundation Engineering and Jointless Bridge", Construction Guide, pp.373-472.
  24. Pells, P.J. N. (1975), "The Use of the Point Load Test in Predicting the Compressive Strength of Rock Materials", Australian Geomechanical Journal, G5, pp.54-56.
  25. Read JRL, Thornton PN, and Regan WM (1980), "A Regional Approach to the Point Load Test", Proceeding of the Aust-NZ Geomech. Conference 2, pp.35-39.
  26. Rusnak JA (1998), "Application of the Coal Mine Roof Rating, Derived from Drill Core, In the Roof Support Design of a Coal Belt Conveyor Tunnel", Proc. of the 17th International Conference on Ground Control in Mining, Morgantown, WV, pp.221-230.
  27. Shin, B. W. and Lee, J. D. (2000), "Field Model Test on Uplift Capacity of Bored Pile in Weathered Granite Soil", Journal of Korea Society of Civil Engineers, Vol.20, No.5-C, pp.441-451.
  28. Singh VK and Singh DP (1993), "Correlation Between Point Load Index and Compressive Strength for Quartzite Rocks", Geotechnical and Geological Engineering, 11, pp.269-272. https://doi.org/10.1007/BF00466369
  29. Smith HJ (1997), "The Point Load Test for Weak Rock in Dredging Applications", International Journal of Rock Mechanics, Min. Sci 34, No. 3-4, Paper No. 295.
  30. Vallejo LE, Walsh RA, and Robinson MK (1989), "Correlation Between Unconfined Compressive and Point Load Strength for Appalachian Rocks", Proceeding of the 30th U.S. Symposium on Rock Mechanics, pp.461-468.

피인용 문헌

  1. Study on the Increase of the Supporting Capacity of a Cement Milk Pile with Expansive Additives vol.11, pp.21, 2021, https://doi.org/10.3390/app11219922