DOI QR코드

DOI QR Code

Nitrogen Mineralization in Soil Amended with Oil-Cake and Amino Acid Fertilizer under a Upland Condition

밭토양 조건에서 유박과 아미노산 비료의 질소 무기화량 추정

  • 임종욱 (경상대학교 환경생명화학과) ;
  • 김송엽 (경상대학교 환경생명화학과) ;
  • 윤영은 (경상대학교 환경생명화학과) ;
  • 김장환 (경상대학교 환경생명화학과) ;
  • 이상범 (국립농업과학원 유기농업과) ;
  • 이용복 (경상대학교 생명과학연구원)
  • Received : 2015.10.26
  • Accepted : 2015.11.07
  • Published : 2015.12.31

Abstract

The potential of nitrogen mineralization was studied by applying organic fertilizer to soil and incubating at $25^{\circ}C$ for 28 weeks. The organic fertilizers used in this experiment were oil-cake (CF-I, CF-II) and amino acid fertilizer (AAF-I, AAF-II). Accumulated mineralized nitrogen (N) fits the frist-order kinetics during incubation. The N mineralization potential ($N_0$) for organic fertilizers treated soil was highest at AAF-II treatment with a value of 27.71 N mg/100g, then followed by CF-II, AAF-I, CF-I. The pure N mineralization potential ($N_0$ treatment - $N_0$ control) for CF-I, CF-II, AAF-I, AAF-II were 2.55, 5.83, 3.66, 8.57 N mg/100g, respectively. The amount of N mineralized from organic fertilizers applied soil ranged from 46% to 61% of the total N content in organic fertilizer. The half-life ($t_{1/2}$) of organic nitrogen in soil treated with oil-cake and amino acid fertilizer was 17-21 days. Therefore, half of nitrogen contained in oil-cake and amino acid fertilizer was mineralized after 3 weeks application.

유기자재의 토양 중 질소 무기화 특성을 구명하기 위해 유박(CF-I, CF-II), 아미노산(AAF-I, AAF-II)을 각각 처리하여 28주간 항온시험을 실시하였다. 항온기간 동안 누적 질소 무기화량을 1차 반응 속도식(first-order kinetics)에 적용하여 잠재적 질소무기화량($N_0$)를 평가 한 결과 AAF-II에서 27.71 N mg/100g로 가장 높았으며, CF-I에서 21.69 N mg/100g로 가장 낮았다. 그리고 잠재적 순질소무기화량($N_0$ treatment - $N_0$ control)은 CF-I, CF-II, AAF-I, AAF-II 처리에서 각각 2.55, 5.83, 3.66, 8.57 N mg/100g으로 나타났으며, 28주 동안 실제 질소무기 화량의 97.3-112.9%에 해당되었다. 특히 유박, 아미노산을 처리한 토양의 유기태 질소의 무기화 반감기($t_{1/2}$)는 17-21일로 유박과 아미노산 비료에 포함된 질소는 3주 이내에 무기화되는 것을 확인하였다. 따라서 유기농업에 이용되는 유박과 아미노산에 함유된 질소의 1/2는 3주 이내에 모두 무기화되는 것으로 나타났다.

Keywords

References

  1. Chae, Y. M. and M. A. Tabatabai. 1986. Mineralization of Nitrogen in Soils Amended with Organic Wastes. J. Environ. Qual. 15: 193-198.
  2. Eghball, B. 2000. Nitrogen Mineralization from Field Applied Beef Cattle Feedlot Manure of Compost. Soil Sci. Soc. Am. J. 64: 2024-2030. https://doi.org/10.2136/sssaj2000.6462024x
  3. Hernandez, T., R. Moral, A. Perez-Espinosa, J. Moreno-Caselles, M. D. Perez-Murcia, and C. Garcia. 2002. Nitrogen Mineralization Potential in Calcareous Soils Amended with Sewage Sludge. Bioresour. Technol. 83: 213-219. https://doi.org/10.1016/S0960-8524(01)00224-3
  4. Hseu, Z. Y. and C. C. Huang. 2005. Nitrogen Mineralization Potentials in Three Tropical Soils Treated with Biosolids. Chemosphere. 59: 447-454. https://doi.org/10.1016/j.chemosphere.2004.10.042
  5. Idei, K. and T. Yoshino. 1972. Utilization of nitrogen in paddy field. Report of Natl. Agri. Res. Japan. 2: 1-14.
  6. Janssen, B. H. 1966. Nitrogen Mineralization in Relation to C. N Ratio and Decomposability of Organic Matters. Plant Soil. 181: 39-45.
  7. Joa, J. H., K. H. Moon, S. C. Kim, D. G. Moon, and S. W. Koh. 2012. Effect of Temperature Condition on Nitrogen Mineralization of Organic Matter and Soil Microbial Community Structure in non-Volcanic Ash Soil. Korean J. Soil Sci. Fert. 45: 377-384. https://doi.org/10.7745/KJSSF.2012.45.3.377
  8. Kim, H. W., H. S. Choi, B. H. Kim, H. J. Kim, K. J. Choi, D. Y. Chung, Y. Lee, K. L. Park, and S. K. Jung. 2012. Change of Organic Rice Yield as Affected by Surface and Broadcast Fertilizer Applications. Korean J. Organic Agric. 20: 81-89.
  9. Kim, K. C., B. K. Ahn, D. Y. Ko, J. Ko, and S. S. Jeong. 2014. Effects of Expeller Cake Fertilizer on Soil Properties and Tah Tasai Chinese Cabbage Yield in Organic Greenhouse Farm. Korea J. Environ Agric. 33: 149-154. https://doi.org/10.5338/KJEA.2014.33.3.149
  10. Lee, T,. H. S. Choi, J. H. Shin, and S. M. Lee. 2012. Mineralized N of Plant Residues with Different C:N Ratios under Upland and Rice Paddy Condition. J. Food Agric. Environ. 10: 808-812.
  11. Lim, T. J., J. M. Park, S. E. Lee, H. C. Jung, S. H. Jeon, and S. D. Hong. 2011. Optimal Application Rate of Mixed Expeller Cake and Rice Straw and Impacts on Physical Properties of Soil in Organic Cultivation of Tomato. Korean J. Environ Agric. 30: 105-110. https://doi.org/10.5338/KJEA.2011.30.2.105
  12. Miller, R. W., R. L. Donahu, and J. U. Miller. 1990. Soils: An introduction to soils and plant growth. Prentice-Hall, New Jersey, USA. pp. 192-278.
  13. Stanford, G. and S. J. Smith. 1972. Nitrogen Mineralization Potentials of Soil. Soil Sci. Amer. Proc. 36: 465-472. https://doi.org/10.2136/sssaj1972.03615995003600030029x
  14. Yun, H. B., Y. Lee, C. H. Tu, S. M. Lee, B. K. Htun, and Y. B. Lee. 2007. Effects of Crude Carbohydrate Content in Livestock Manure Compost on Organic Matter Decomposition Rate in Upland Soil. Korean J. Soil Sci. Fert. 40: 364-368.
  15. Yun, H. B., W. K. Park, S. M. Lee, S. C. Kim, and Y. B. Lee. 2009. Nitrogen Uptake by Chinese Cabbage and Soil Chemical Properties as Affected By Successive Application of Chicken Manure Compost. Korean J. Environ Agric. 28: 9-14. https://doi.org/10.5338/KJEA.2009.28.1.009
  16. Yun, H. B., Y. Lee, C. Y. Tu, J. E. Tang, S. M. Lee, J. H. Shin, S. C. Kim, and Y. B. Lee. 2010. Soil nitrogen Mineralization Influenced by Continuous Application of Livestock Manure Composts. Korean J. Soil Sci. Fert. 43: 329-334.
  17. Youn, L., H. S. Choi, and S. M. Lee. 2012. Estimation of N-and P-Mineralization of Organic Materials under a Paddy Condition. Korean J. Intl, Agri. 24: 299-302.