DOI QR코드

DOI QR Code

Comparison of Meteorological Drought and Hydrological Drought Index

기상학적 가뭄지수와 수문학적 가뭄지수의 비교

  • Lee, Bo-Ram (Ministry of Public Safety and Security, National Disaster Management Institute, Disaster Information Research Division) ;
  • Sung, Jang Hyun (Ministry of Land, Infrastructure and Transport, Yeongsan River Flood Control Office) ;
  • Chung, Eun-Sung (Department of Civil Engineering, Seoul National University of Science and Technology)
  • 이보람 (국민안전처 국립재난안전연구원 재난정보연구실) ;
  • 성장현 (국토교통부 영산강홍수통제소 예보통제과) ;
  • 정은성 (서울과학기술대학교 건설시스템디자인공학과)
  • Received : 2014.10.29
  • Accepted : 2015.01.17
  • Published : 2015.01.31

Abstract

In this study, meteorological drought indices were examined to simulate hydrological drought. SPI (Standardized Precipitation Index) and SPEI (Standardized Precipitation Evapotranspiration Index) was applied to represent meteorological drought. Further, in order to evaluate the hydrological drought, monthly total inflow and SDI (Streamflow Drought Index) was computed. Finally, the correlation between meteorological and hydrological drought indices were analyzed. As a results, in monthly correlation comparison, the correlation between meteorological drought index and monthly total inflow was highest with 0.67 in duration of 270-day. In addition, a meteorological drought index were correlated 0.72 to 0.87 with SDI. In compared to the annual extremes, the relationship between meteorological drought index and minimum monthly inflow was hardly confirmed. But SDI and SPEI showed a slightly higher correlation. There are limitation that analyze extreme hydrological drought using meteorological drought index. For the evaluation of the hydrological drought, drought index which included inflow directly is required.

본 연구는 기상학적 가뭄지수가 수문학적 가뭄에 대한 모사정도를 검토하였다. 기상학적 가뭄지수 중에서 강수량을 변수로 하는 SPI(Standardized Precipitation Index)와 강수량 및 증발산량을 변수로 하는 SPEI(Standardized Precipitation Evapotranspiration Index)를 이용하였고, 수문학적 가뭄 평가를 위하여 월 총 유입량과 하천수 가뭄지수인 SDI(Streamflow Drought Index)를 계산하여, 최종적으로 기상학적 가뭄지수와 수문학적 가뭄지수와의 상관정도를 분석하였다. 월별 상관계수 비교결과, 지속기간 270일에 기상학적 가뭄지수와 월 총 유입량과 상관정도가 가장 높아서 0.67로 나타났고 기상학적 가뭄지수로 SDI와의 상관정도는 0.72~0.87이었다. 연별 극한값을 비교한 결과, 월 총 유입량의 최저값과 기상학적 가뭄지수의 연관성은 거의 확인되지 않았다. 다만 SDI와 SPEI가 매우 높은 상관정도를 보였다. 기상학적 가뭄지수로 수문학적 극한가뭄에 해석하는 데에 한계가 있는 만큼 수문 가뭄해석이 목적이라면 유량자료가 직접 활용될 수 있는 가뭄지수가 필요하다.

Keywords

References

  1. Begueria, S., Vicente-Serrano, S.M., Reig, F., and Latorre, B. (2013), "Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring." International Journal of Climatology, DOI:10.1002/joc.3887.
  2. Correia, F.N., Santos, M.A., and Rodrigues, R.P. (1991). "Reliability in regional drought studies." Water Resources Engineering Risk Assessment, pp. 63-72.
  3. Dai, A. (2011). "Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900-2008." Journal of Geophysical Research: Atmospheres (1984-2012), Vol. 116, doi:10.1029/2010JD015541.
  4. De Michele, C., Salvadori, G., Vezzoli, R., and Pecora, S. (2013). "Multivariate assessment of droughts: Frequency analysis and dynamic return period." Water Resources Research, Vol. 49, pp. 6985-6994. https://doi.org/10.1002/wrcr.20551
  5. Hernandez, E.A., and Uddameri, V. (2013). "Standardized precipitation evaporation index (SPEI)-based drought assessment in semi-arid south Texas." Environmental Earth Sciences, pp. 1-11.
  6. Kauffmann, G.J., and Vonck, K.J. (2011). "Frequency and intensity of extreme drought in the Delaware basin." Water Resources Research, Vol. 47, pp. 1600-2002, doi:10.1029/2009WR008821.
  7. Keyantash, J., and Dracup, J. (2002). "The quantification of drought: an evaluation of drought indices." Bulletin of the American Meteorological Society, Vol. 83, No. 8, pp. 1167-1180. https://doi.org/10.1175/1520-0477(2002)083<1191:TQODAE>2.3.CO;2
  8. Kim, B.-S., Sung, J.H., Lee, B.H., and Kim, D.J. (2013). "Evaluation on the Impact of Extreme Droughts in South Korea using the SPEI and RCP8.5 Climate Change Scenario." Journal ofKorean Society ofHazard Mitigation, Vol. 13, No. 2, pp. 097-109. (in Korean) https://doi.org/10.9798/KOSHAM.2013.13.2.097
  9. Kim, B.-S., Sung, J.H., Kang, H.S., and Cho, C.H. (2012). "Assessment of Drought Severity over South Korea using Standardized Precipitation Evapo-transpiration Index (SPEI)." Journal of Korea Water Resources Association, Vol. 45, No. 9, pp. 887-900. (in korean) https://doi.org/10.3741/JKWRA.2012.45.9.887
  10. Kim, B.-S., Kwon, H.-H., and Kim, H.-S. (2011). "Evaluation on impact of climate change on drought risk." Korean Wetlands Society Journal, Vol. 13, No. 1, pp. 1-11. (in Korean)
  11. Lorenzo-Lacruz, J., Vincente-Serrano, S.M., Lopez-Moreno, J.I. Begueria, S., Garcia-Ruiz, J.M., and Cuadrat, J.M. (2010). "The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain)." Journal of Hydrology, Vol. 386, pp. 13-26, doi:10.1016/j.jhydrol.2010.01.001.
  12. McEvoy, D.J., Huntington, J.L. Abatzoglou, J.T., and Edwards, L.M. (2012). "An evaluation of multiscalar drought indices in Nevada and Eastern California." Earth Interactions, Vol. 16, pp. 1-18, doi:10.1175/2012EI000447.1.
  13. McKee, T.B., Doeskin, N.J., and Kleist, J. (1993). Drought Monitoring with Multiple Time Scales. Proceeding of 9th Conference on Applied Climatology, American Meteorological Society, pp. 233-236.
  14. Mishra, A.K., and Singh, V.P. (2009). "Analysis of drought severity.area.frequency curves using a general circulation model and scenario uncertainty." Journal of Geophysical Research, Vol. 114, D06120, doi: 10.1029/2008JD010986.
  15. Nalbantis, I, and Tsakiris, G. (2009). "Assessment of hydrological drought revisited." Water Resources Management, Vol. 23, pp. 881-897. https://doi.org/10.1007/s11269-008-9305-1
  16. Nalbantis, I. (2008). "Evaluation of a hydrological drought index." European Water, Vol. 23, No. 24, pp. 67-77.
  17. Sung, J.H., and Chung, E.-S. (2014a) "Application of streamflow drought index using threshold level method." Journal of Korea Water Resources Association, Vol. 47, No. 5, pp. 491-500. (in korean) https://doi.org/10.3741/JKWRA.2014.47.5.491
  18. Sung, J.H., and Chung, E.-S. (2014b) "Development of streamflow drought severity-duration-frequency curves using the threshold level method." Hydrology and Earth System Sciences, Vol. 18, pp. 3341-3351, doi:10.5194/hess-18-3341-2014.
  19. Tate, E.L., and Gustard, A. (2000). Drought definition: A hydrological perspective, Springer, Netherlands.
  20. Thornthwaite, C.W. (1948). "An approach toward a rational classification of climate." Geographical Review, Vol. 38, No. 1, pp. 55-94. https://doi.org/10.2307/210739
  21. Vasiliades, L., and Loukas, A. (2009). "Hydrological response to meteorological drought using the Palmer drought indices in Thessaly, Greece." Desalination, Vol. 237, No. 1, pp. 3-12. https://doi.org/10.1016/j.desal.2007.12.019
  22. Vicente-Serrano, S.M., Begueria, S., and Lopez-Moreno, J.I. (2010). "A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index." Journal of Climate, Vol. 23, No. 7, pp. 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
  23. Wilhite, D.A., and Glantz, M.H. (1985). "Understanding: the drought phenomenon: The role of definitions." Water International, Vol. 10, No. 3, pp. 111-120. https://doi.org/10.1080/02508068508686328
  24. Zhai, J., Su, B., Krysanova, V., Vetter, T., Gao, C., and Jiang, T. (2010). "Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China." Journal of Climate, Vol. 23, pp. 649-663, doi:0.1175/2009JCLI2968.1. https://doi.org/10.1175/2009JCLI2968.1

Cited by

  1. MODIS DSI for Evaluation of the Local Drought Events in Korea vol.35, pp.6, 2015, https://doi.org/10.12652/Ksce.2015.35.6.1209
  2. Appraisal of drought characteristics of representative drought indices using meteorological variables 2017, https://doi.org/10.1007/s12205-017-1744-x
  3. Characteristics of the Han River Basin drought using SPEI and RDI vol.49, pp.3, 2016, https://doi.org/10.3741/JKWRA.2016.49.3.187
  4. Drought analysis of Cheongmicheon watershed using meteorological, agricultural and hydrological drought indices vol.49, pp.6, 2016, https://doi.org/10.3741/JKWRA.2016.49.6.509
  5. The probabilistic drought forecast based on ensemble using improvement of the modified surface water supply index vol.49, pp.10, 2016, https://doi.org/10.3741/JKWRA.2016.49.10.835
  6. Drought Assessment with the Community Land Model for 1951–2010 in East Asia vol.10, pp.6, 2018, https://doi.org/10.3390/su10062100
  7. Estimating Quantified Hydrological Input Value for Hydrological Drought vol.18, pp.5, 2018, https://doi.org/10.9798/KOSHAM.2018.18.5.11
  8. Statistical Analysis of Changes in Reservoir Storage According to Standard Precipitation Evapotranspiration Index (SPEI) and Dam Water Release vol.18, pp.2, 2018, https://doi.org/10.9798/KOSHAM.2018.18.2.409
  9. The probabilistic drought prediction using the improved surface water supply index in the Korean peninsula vol.50, pp.1, 2018, https://doi.org/10.2166/nh.2018.045