DOI QR코드

DOI QR Code

Recent Progress in Bi-Te-based Thermoelectric Materials

Bi-Te계 열전소재 연구 동향

  • Lee, Kyu Hyoung (Department of Nano Applied Engineering, Kangwon National University) ;
  • Kim, Jong-Young (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Soon-Mok (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
  • 이규형 (강원대학교 나노응용공학과) ;
  • 김종영 (한국세라믹기술원 이천분원) ;
  • 최순목 (한국기술교육대학교 에너지신소재화학공학부)
  • Received : 2014.10.21
  • Accepted : 2014.12.15
  • Published : 2015.01.31

Abstract

Thermoelectric (TE) technology is becoming increasingly important in applications of solid-state cooling and renewable energy sources. $Bi_2Te_3$-based TE materials are widely used in small-scale cooling and temperature control applications; however, higher levels of TE performance are required for new applications such as large-scale cooling (e.g., domestic refrigerators or air conditioners) and for highly efficient power generation system. Recently, the TE performance of $Bi_2Te_3$-based materials has been remarkably enhanced by the introduction of nanostructuring technologies which can be used to prepare TE raw materials. Because it takes into account the theoretical and experimental characteristics, nanostructuring has been shown to be one of the most promising ways to realize the simultaneous control of the electronic and thermal transport properties. In this review, emphasis is placed on bulk-type nanostructured $Bi_2Te_3$-based TE materials. Nanostructuring technologies for enhanced TE performance are summarized, and a few important strategies are presented.

Keywords

References

  1. G. A. Slack, New Materials and Performance Limits for Thermoelectric Cooling; pp. 407-40 in CRC Handbook of Thermoelectrics, Ed. by D. M. Rowe, CRC Press, Boca Raton, FL, 1995.
  2. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, "Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors," Phys. Rev. Lett., 96 [4] 045901 (2006). https://doi.org/10.1103/PhysRevLett.96.045901
  3. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, "New Directions for Low-dimensional Thermoelectric Materials," Adv. Mater., 19 [8] 1043-53 (2007). https://doi.org/10.1002/adma.200600527
  4. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, "Thin-film Thermoelectric Devices with High Room-temperature Figures of Merit," Nature, 413 [6856] 597-602 (2001). https://doi.org/10.1038/35098012
  5. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys," Science, 320 [5876] 634-38 (2008). https://doi.org/10.1126/science.1156446
  6. W. J. Xie, J. He, H. J. Kang, X. F. Tang, S. Zhu, M. Laver, S. Y. Wang, J. R. D. Copley, C. M. Brown, Q. J. Zhang, and T. M. Tritt, "Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of $(Bi,Sb)_2Te_3$ Nanocomposites," Nano Lett., 10 [9] 3283-89 (2010). https://doi.org/10.1021/nl100804a
  7. Y. Min, J. W. Roh, H. Yang, M. Park, S. I. Kim, S. Hwang, S. M. Lee, K. H. Lee, and U. Jeong, "Surfactant-free Scalable Synthesis of $Bi_2Te_3$ and $Bi_2Se_3$ Nanoflakes and Enhanced Thermoelectric Properties of Their Nanocomposites," Adv. Mater., 25 [10] 1425-29 (2013). https://doi.org/10.1002/adma.201203764
  8. S. I. Kim, S. Hwang, J. W. Roh, K. Ahn, D. Yeon, and K. H, Lee, "Experimental Evidence of Enhancement of Thermoelectric Properties in Tellurium Nanoparticle-embedded Bbismuth Antimony Telluride," J. Mater. Res., 27 [19] 2449-56 (2012). https://doi.org/10.1557/jmr.2012.273
  9. K. H. Lee, H. S. Kim, S. I. Kim, E. Lee, S. M. Lee, J. Rhyee, J. Y. Jung, I. H. Kim, Y. Wang, and K. Koumoto, "Enhancement of Thermoelectric Figure of Merit for $Bi_{0.5}Sb_{1.5}Te_3$ by Metal Nanoparticle Decoration," J. Electron. Mater., 41 [6] 1165-69 (2012). https://doi.org/10.1007/s11664-012-1913-0
  10. Y. Ma, Q. Hao, B. Poudel, Y. C. Lan, B. Yu, D. Z. Wang, G. Chen, and Z. Ren, "Enhanced Thermoelectric Figure-ofmerit in p-type Nanostructured Bismuth Antimony Tellurium Aalloys Made from Elemental Chunks," Nano Lett., 8 [8] 2580-84 (2008). https://doi.org/10.1021/nl8009928
  11. N. Gothard, X. Ji, J. He, and T. M. Tritt, "Thermoelectric and Transport Properties of n-type $Bi_2Te_3$ Nanocomposites," J. Appl. Phys., 103 [5] 054314 (2008). https://doi.org/10.1063/1.2871923
  12. Y. Q. Cao, X. B. Zhao, T. J. Zhu, X. B. Zhang, and J. P. Tu, "Syntheses and Thermoelectric Properties of $Bi_2Te_3$/$Sb_2Te_3$ Bulk Nanocomposites with Laminated Nanostructure," Appl. Phys. Lett., 92 [14] 143106 (2008). https://doi.org/10.1063/1.2900960
  13. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, "High Thermoelectric Performance BiSbTe Alloy with Unique Low-dimensional Structure," J. Appl. Phys., 105 [11] 113713 (2009). https://doi.org/10.1063/1.3143104
  14. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, "Unique Nanostructures and Enhanced Thermoelectric Performance of Melt-spun BiSbTe Alloys," Appl. Phys. Lett., 94 [10] 102111 (2009). https://doi.org/10.1063/1.3097026
  15. M. R. Dirmyer, J. Martin, G. S. Nolas, A. Sen, and J. V. Badding, "Thermal and Electrical Conductivity of Sizetuned Bismuth Telluride Nanoparticles," Small, 5 [8] 933-37 (2009). https://doi.org/10.1002/smll.200801206
  16. M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller, "Synthesis and Thermoelectric Characterization of $Bi_2Te_3$ Nanoparticles," Adv. Funct. Mater., 19 [21] 3476-83 (2009). https://doi.org/10.1002/adfm.200901261
  17. X. Yan, B. Poudel, Y. Ma, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z. F. Ren, "Experimental Studies on Anisotropic Thermoelectric Properties and Structures of n-type $Bi_2Te_{2.7}Se_{0.3}$," Nano Lett., 10 [9] 3373-78 (2010). https://doi.org/10.1021/nl101156v
  18. M. Scheele, N. Oeschler, I. Veremchuk, K. G. Reinsberg, A. M. Kreuziger, A. Kornowski, J. Broekaert, C. Klinke, and H. Weller, "ZT Enhancement in Solution-grown $Sb_{2-x}Bi_xTe_3$ Nanoplatelets ACS Nano, 4 [7] 4283-91 (2010). https://doi.org/10.1021/nn1008963
  19. R. Y. Wang, J. P. Feser, X. Gu, K. M. Yu, R. A. Segalman, A. Majumdar, D. J. Milliron, and J. Urban, "Universal and Solution-processable Precursor to Bismuth Chalcogenide Thermoelectric," Chem. Mater., 22 [6] 1943-45 (2010). https://doi.org/10.1021/cm903769q
  20. Y. C. Zhang, H. Wang, S. Kraemer, Y. F. Shi, F. Zhang, M. Snedaker, K. L. Ding, M. Moskovits, G. J. Snyder, and G. D. Stuck, "Surfactant-free Synthesis of $Bi_2Te_3$-Te Micro-nano Heterostructure with Enhanced Thermoelectric Figure of Merit," ACS Nano, 5 [4] 3158-65 (2011). https://doi.org/10.1021/nn2002294
  21. G. G. Lee, D. Y. Lee, and G. H. Ha, "Document Synthesis of Bi-Sb-Te Thermoelectric Material by the Plasma Arc Discharge Process," Met. Mater. Int., 17 [2] 245-50 (2011). https://doi.org/10.1007/s12540-011-0410-y
  22. P. K. Nguyen, K. H. Lee, J. Moon, S. I. Kim, K. Ahn, L. H. Chen, S. M. Lee, R. K. Chen, S. Jin, and A. E. Berkowitz, "Spark Erosion: A High Production Rate Method for Producing $Bi_{0.5}Sb_{1.5}Te_3$ Nanoparticles with Enhanced Thermoelectric Performance," Nanotechnology, 23 [41] 415604 (2012). https://doi.org/10.1088/0957-4484/23/41/415604
  23. R. J. Mehta, Y. Zhang, C. Karthik, B. Singh, R. W. Siegel, T. Borca-Tasciuc, and G. Ramanath, "A New Class of Doped Nanobulk High-figure-of-merit Thermoelectrics by Scalable Bottom-up Assembly," Nature Mater., 11 [3] 233-40 (2012). https://doi.org/10.1038/nmat3213
  24. A. Soni, Z. Yanyuan, Y. Ligen, M. K. K. Aik, M. S. Dresselhaus, and Q. Xiong, "Enhanced Thermoelectric Properties of Solution Grown $Bi_2Te_{3-x}$ Sex Nanoplatelet Composites," Nano Lett., 12 [3] 1203-09 (2012). https://doi.org/10.1021/nl2034859
  25. J. S. Son, M. K. Choi, M. Han, K. Park, J. Kim, S. J. Lim, M. Oh, Y. Kuk, C. Park, S. Kim, and T. Hyeon, "N-type Nanostructured Thermoelectric Materials Prepared from Chemically Synthesized Ultrathin $Bi_2Te_3$ Nanoplates," Nano Lett., 12 [2] 640-47 (2012). https://doi.org/10.1021/nl203389x
  26. A. Soni, Y. Shen, M. Yin, Y. Zhao, L. Yu, X. Hu, Z. Dong, K. A. Khor, M. S. Dresselhaus, and Q. Xiong, "Interface Driven Energy Filtering of Thermoelectric Power in Spark Plasma Sintered $Bi_2Te_{2.7}Se_{0.3}$ Nanoplatelet Composites," Nano Lett., 12 [8] 4305-10 (2012). https://doi.org/10.1021/nl302017w
  27. J. Ko, J. Y. Kim, S. M. Choi, Y. S. Lim, W. S. Seo, and K. H. Lee, "Nanograined Thermoelectric $Bi_2Te_{2.7}Se_{0.3}$ with Ultralow Phonon Transport Prepared from Chemically Exfoliated Nanoplatelets," J. Mater. Chem. A, 1 [41] 12791- 96 (2013). https://doi.org/10.1039/c3ta12623d
  28. P. Puneet, R. Podila, M. Karakaya, S. Zhu, J. He, T. M. Tritt, M. S. Dresselhaus, and A. M. Rao, "Preferential Scattering by Interfacial Charged Defects for Enhanced Thermoelectric Performance in Few-layered n-type $Bi_2Te_3$," Sci. Rep., 3 3212 (2013). https://doi.org/10.1038/srep03212
  29. Z. Chen, M. Y. Lin, G. D. Xu, S. Chen, J. H. Zhang, and M. M. Wang, "Hydrothermal Synthesized Nanostructure Bi-Sb-Te Thermoelectric Materials," J. Alloy Compd., 588 384-87 (2014). https://doi.org/10.1016/j.jallcom.2013.11.065
  30. S. N. Girard, J. He, C. Li, S. Moses, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, "In Situ Nanostructure Generation and Evolution within a Bulk Thermoelectric Material to Reduce Lattice Thermal Conductivity," Nano Lett., 10 [8] 2825-31 (2010). https://doi.org/10.1021/nl100743q
  31. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, "Strained Endotaxial Nanostructures with High Thermoelectric Figure of Merit," Nature Chem., 3 [2] 160-66 (2011). https://doi.org/10.1038/nchem.955
  32. J. Androulakis, I. Todorov, J. He, D. Chung, V. Dravid, and M. G. Kanatzidis, "Thermoelectrics from Abundant Chemical Elements: High-performance Nanostructured PbSe- PbS," J. Am. Chem. Soc., 133 [28] 10920-27 (2011). https://doi.org/10.1021/ja203022c
  33. K. Biswas, J. He, G. Wang, S. Lo, C. Uher, V. P. Dravid, and M. G. Kanatzidis, "High Thermoelectric Figure of Merit in Nanostructured p-type PbTe-MTe (M = Ca, Ba)," Energy Environ. Sci., 4 [11] 4675-84 (2011). https://doi.org/10.1039/c1ee02297k
  34. S. Lo, J. He, K. Biswas, M. G. Kanatzidis, and V. P. Dravid, "Phonon Scattering and Thermal Conductivity in p-type Nanostructured PbTe-BaTe Bulk Thermoelectric Materials," Adv. Funct. Mater., 22 [24] 5175-84 (2012). https://doi.org/10.1002/adfm.201201221
  35. K. Biswas, J. He, I. D. Blum, C. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, "High-performance Bulk Thermoelectrics with All-scale Hierarchical Architectures," Nature, 489 [7416] 414-18 (2012). https://doi.org/10.1038/nature11439
  36. J. He, I. D. Blum, H. Q. Wang, S. N. Girard, J. Doak, L. D. Zhao, J. C. Zheng, G. Casillas, C. Wolverton, M. Jose-Yacaman, D. N. Seidman, M. G. Kanatzidis, and V. P. Dravid, "Morphology Control of Nanostructures: Na-doped PbTe-PbS System," Nano Lett., 12 [11] 5979-84 (2012). https://doi.org/10.1021/nl303449x
  37. R. J. Korkosz, T. C. Chasapis, S. Lo, J. W. Doak, Y. J. Kim, C. Wu, E. Hatzikraniotis, T. P. Hogan, D. N. Seidman, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, "High ZT in p-type $(PbTe)_{1-2x}(PbSe)_x(PbS)_x$ Thermoelectric Materials," J. Am. Chem. Soc., 136 [8] 3225-27 (2014). https://doi.org/10.1021/ja4121583
  38. J. F. Li and J. Liu, "Effect of Nano-SiC Dispersion on Thermoelectric Properties of $Bi_2Te_3$ Polycrystals," Phys. Status Solidi (a), 203 [15] 3768-73 (2006). https://doi.org/10.1002/pssa.200622011
  39. D. Park, M. Kim, and T. Oh, "Thermoelectric Energy-conversion Characteristics of n-type $Bi_2(Te,Se)_3$ Nanocomposites Processed with Carbon Nanotube Dispersion," Curr. Appl. Phys., 11 [4] 41-45 (2011). https://doi.org/10.1016/j.cap.2011.07.007
  40. F. Li, X. Huang, Z. Sun, J. Ding, J. Jiang, W. Jiang, and L. Chen, "Enhanced Thermoelectric Properties of n-type $Bi_2Te_3$-based Nanocomposite fabricated by Spark Plasma Sintering," J. Alloys Compd., 509 [14] 4769-73 (2011). https://doi.org/10.1016/j.jallcom.2011.01.155
  41. M. Popov, S. Buga, P. Vysikaylo, P. Stepanov, V. Skok, V. Medvedev, E. Tatyanin, V. Denisov, A. Kirichenko, V. Aksenenkov, and V. Blank, "$C_{60}$-doping of Nanostructured Bi-Sb-Te Thermoelectric," Phys. Status Solidi (a), 208 [12] 2783-89 (2011). https://doi.org/10.1002/pssa.201127075
  42. V. D. Blank, S. G. Buga, V. A. Kulbachinskii, V. G. Kytin, V. V. Medvedev, M. Y. Popov, P. B. Stepanov, and V. F. Skok, "Thermoelectric Properties of $Bi_{0.5}Sb_{1.5}Te_3/C_{60}$ Nanocomposites," Phys. Rev. B, 86 [7] 075426 (2012). https://doi.org/10.1103/PhysRevB.86.075426
  43. K. T. Kim, S. Y. Choi, E. H. Shin, K. S. Moon, H. Y. Koo, G. G. Lee, and G. H. Ha, "The Influence of CNTs on the Thermoelectric Properties of a CNT/$Bi_2Te_3$ Composite," Carbon, 52 541-49 (2013). https://doi.org/10.1016/j.carbon.2012.10.008
  44. M. Cutler and N. F. Mott, "Observation of Anderson Localization in an Electron Gas," Phys. Rev., 181 [3] 1336-40 (1969). https://doi.org/10.1103/PhysRev.181.1336
  45. D. Vashaee and A. Shakouri, "Improved Thermoelectric Power Factor in Metal-based Superlattices," Phys. Rev. Lett., 92 [10] 106103 (2004). https://doi.org/10.1103/PhysRevLett.92.106103
  46. S. Faleev and F. Leonard, "Theory of Enhancement of Thermoelectric Properties of Materials with Nanoinclusions," Phys. Rev. B, 77 [21] 214304 (2008). https://doi.org/10.1103/PhysRevB.77.214304
  47. S. Hwang, S. I. Kim, K. Ahn, J. W. Roh, D. J. Yang, S. M. Lee, and K. H. Lee, "Enhancing the Thermoelectric Properties of p-type Bulk Bi-Sb-Te Nanocomposites via Solution-based Metal Nanoparticle Decoration," J. Electron. Mater., 42 [7] 1411-16 (2013). https://doi.org/10.1007/s11664-012-2280-6

Cited by

  1. Current Status of Thermoelectric Power Generation Technology vol.27, pp.4, 2016, https://doi.org/10.14478/ace.2016.1064
  2. Effects of Addition of Si and Sb on the Microstructure and Thermoelectric Properties of GeTe pp.2005-4149, 2018, https://doi.org/10.1007/s12540-018-0194-4
  3. 초음파 분무 열분해법에 의한 산화물 환원 공정의 구형 Bi2Te3 분말 합성 vol.50, pp.2, 2015, https://doi.org/10.5695/jkise.2017.50.2.114
  4. Effect of Cu/In Doping on the Thermoelectric Transport Properties of Bi-Sb-Te Alloys vol.57, pp.10, 2015, https://doi.org/10.3365/kjmm.2019.57.10.673
  5. Influence of Cu Doping on Bipolar Conduction Suppression for p-type Bi0.5Sb1.5Te3 and Bi0.4Sb1.6Te3 Alloys vol.58, pp.6, 2015, https://doi.org/10.3365/kjmm.2020.58.6.439
  6. Influence of Te Vacancies on the Thermoelectric Properties of n-type Cu0.008Bi2Te2.7-xSe0.3 vol.58, pp.10, 2015, https://doi.org/10.3365/kjmm.2020.58.10.721
  7. Segregation of NiTe2 and NbTe2 in p-Type Thermoelectric Bi0.5Sb1.5Te3 Alloys for Carrier Energy Filtering Effect by Melt Spinning vol.11, pp.3, 2015, https://doi.org/10.3390/app11030910