DOI QR코드

DOI QR Code

Effects of the Fluorination of Activated Carbons on the Chromium Ion Adsorption

활성탄소의 불소화가 크롬이온 흡착에 미치는 영향

  • Kim, Min-Ji (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Jung, Min-Jung (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 김민지 (충남대학교 바이오응용화학과) ;
  • 정민정 (충남대학교 바이오응용화학과) ;
  • 최석순 (세명대학교 바이오환경공학과) ;
  • 이영석 (충남대학교 바이오응용화학과)
  • Received : 2014.11.29
  • Accepted : 2015.01.08
  • Published : 2015.02.10

Abstract

In this study, phenol-based activated carbons (ACs) were fluorinated at various fluorine partial pressures (0.01~0.03 MPa) and the $Cr^{6+}$ ion adsorption of fluorinated ACs was investigated. According to BET and XPS results, the specific surface area and total pore volume of fluorinated ACs increased by 24.7 and 55.8%, respectively, and fluorine functional groups were introduced to AC surface. The most optimized condition of $Cr^{6+}$ ion adsorption was confirmed at the fluorine partial pressure of 0.02 MPa. And also the removal efficiency of $Cr^{6+}$ ion was up to 98% at 300 mg/L of the initial concentration, and these results showed an approximately three-fold increase compared to that of using untreated ACs. Furthermore, the $Cr^{6+}$ ion adsorption of fluorinated ACs was completed in less than 30 min in contrast with untreated ACs, which was expected to be an increase of the affinity between $Cr^{6+}$ ions and ACs surfaces by fluorination.

본 연구에서는 페놀계 활성탄소를 다양한 불소 분압(0.01~0.03 MPa)으로 불소화를 실시하였으며, 불소화된 활성탄소의 6가 크롬 흡착 특성을 조사하였다. BET와 XPS 결과로부터, 불소화 처리된 활성탄소는 비표면적 및 총 기공부피가 각각 24.7, 58.8% 증가되었으며, 활성탄소 표면에 불소 관능기가 도입됨을 알 수 있었다. 불소 분압이 0.02 MPa일 때, 크롬이온 흡착에 최적화된 표면처리 조건임을 확인하였다. 또한, 초기농도 300 mg/L에서 98%의 제거효율을 나타내었으며, 이러한 결과는 미처리 활성탄소와 비교하여 약 3배 증가됨을 알 수 있었다. 한편, 불소화된 활성탄소의 크롬이온 흡착은 미처리 활성탄소와 대조적으로 30 min 이내에 완료되었으며, 이러한 현상은 페놀계 활성탄소의 표면에서 크롬 이온과의 친화성 증가에 의한 것으로 판단되었다.

Keywords

References

  1. S. J. Park, Y. M. Kim, and J. S. Shin, Studies on anodic oxidation treatment of surface and heavy metal adsorption properties of activated carbon fibers, J. Korean Ind. Eng. Chem., 14, 41-47 (2003).
  2. T. S. Anirudhan, J. Nima, and P. L. Divya, Adsorption of chromium(VI) from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups, Appl. Surf. Sci., 279, 441-449 (2013). https://doi.org/10.1016/j.apsusc.2013.04.134
  3. J. Kotas and Z. Stasicka, Chromium occurrence in the environment and methods of its speciation, Environ. Pollut., 107, 263-283 (2000). https://doi.org/10.1016/S0269-7491(99)00168-2
  4. D. Park and J. M. Park, Removal of hexavalent chromium by using biomass, Korean Chem. Eng. Res., 44, 107-113 (2006).
  5. Y. Wu, H. Luo, H. Wang, C. Wang, J. Zhang, and Z. Zhang, Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyltrimethylammonium bromide, J. Colloid Interf. Sci., 394, 183-191 (2013). https://doi.org/10.1016/j.jcis.2012.11.049
  6. H. S. Park, Reduction of chromium (VI) and carcinogenesis, J. Environ. Toxicol., 18, 165-174 (2003).
  7. A. G. Elham and N. M. Catherine, Using micellar enhanced ultrafiltration and reduction techniques for removal of Cr(VI) and Cr (III) from water, Sep. Purif. Technol., 132, 505-512 (2014). https://doi.org/10.1016/j.seppur.2014.06.010
  8. E. Agrafioti, D. Kalderis, and E. Diamadopoulos, Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge, J. Environ. Manage., 133, 309-314 (2014). https://doi.org/10.1016/j.jenvman.2013.12.007
  9. B. Pakzadeh and J. R. Batista, Chromium removal from ion-exchange waste brines with calcium polysulfide, Water Res., 45, 3055-3064 (2011). https://doi.org/10.1016/j.watres.2011.03.006
  10. R. C. Thomson and M. K. Miller, Carbide precipitation in martensite during the early stages of tempering Cr- and Mo-containing low alloy steels, Acta Mater., 46, 2203-2213 (1988).
  11. E. Dialynas and E. Diamadopoulos, Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater, Desalination, 238, 302-311 (2009). https://doi.org/10.1016/j.desal.2008.01.046
  12. H. Bessbousse, T. Rhlalou, J.-F. Verchere, and L. Lebrun, Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly(ethyleneimine) in a poly(vinyl alcohol) matrix, J. Membrane Sci., 307, 249-259 (2008). https://doi.org/10.1016/j.memsci.2007.09.027
  13. M. Kobya, Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies, Bioresource Technol., 91, 317-321 (2004). https://doi.org/10.1016/j.biortech.2003.07.001
  14. N. Talreja, D. Kumar, and N. Verma, Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads, J. Water Process Eng., 3, 34-45 (2014). https://doi.org/10.1016/j.jwpe.2014.08.001
  15. G. Huang, J. X. Shi, and T. A. G. Langrish, Removal of Cr(VI) from aqueous solution using activated carbon modified with nitric acid, Chem. Eng. J., 152, 434-439 (2009). https://doi.org/10.1016/j.cej.2009.05.003
  16. H. S Ju, S. I Lee, Y. S Lee, and H. G Ahn, Surface modification of activated carbon by acid treatment and adsorption property of heavy metals, Appl. Chem., 4, 173-176 (2000).
  17. S. Ko, D. H. Kim, Y. D. Kim, D. Park, W. Jeong, D. H. Lee, J. Y. Lee, and S. B. Kwon, Investigation on CO adsorption and catalytic oxidation of commercial impregnated activated carbons, Appl. Chem. Eng., 24, 513-517 (2013).
  18. S. X. Liu, X. Chen, X. Y. Chen, Z. F. Liu, and H. L. Wang, Activated carbon with excellent chromium(VI) adsorption performance prepared by acid-base surface modification, J. Hazard. Mater., 141, 315-319 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.006
  19. M. Owlad, M. K. Aroua, W. A. W. Daud, and S. Baroutian, Removal of hexavalent chromium-contaminated water and wastewater: A review, Water Air Soil Pollut., 200, 59-77 (2009). https://doi.org/10.1007/s11270-008-9893-7
  20. M. J. Jung, E. Jeong, S. Cho, S. Y. Yeo, and Y. S. Lee, Effects of surface chemical properties of activated carbon modified by amino-fluorination for electric double-layer capacitor, J. Colloid Interf. Sci., 381, 152-157 (2012). https://doi.org/10.1016/j.jcis.2012.05.031
  21. J. S. Im, J. Yun, Y. M. Lim, H. I. Kim, and Y. S. Lee, Fluorination of electrospun hydrogel fibers for a controlled release drug delivery system, Acta Biomater., 6, 102-109 (2010). https://doi.org/10.1016/j.actbio.2009.06.017
  22. J. S. Im, S. C. Kang, B. C. Bai, T. S. Bae, S. J. In, E. Jeong, S. H. Lee, and Y. S. Lee, Thermal fluorination effects on carbon nanotubes for preparation of a high-performance gas sensor, Carbon, 49, 2235-2244 (2011). https://doi.org/10.1016/j.carbon.2011.01.054
  23. M. J. Jung, J. W. Lim, I. J. Park, and Y. S. Lee, Fluorination of Polymethylmethacrylate (PMMA) Film and Its Surface Characterization, Appl. Chem. Eng., 21, 317-322 (2010).
  24. M. J. Jung, E. Jeong, S. Kim, S. I. Lee, J. S. Yoo, and Y. S. Lee, Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors, J. Fluorine Chem., 132, 1127-1133 (2011). https://doi.org/10.1016/j.jfluchem.2011.06.046
  25. K. C. Kang, S. H. Kwon, S. S. Kim, J. W. Choi, and K. S. Chun, Adsorption of heavy metal ions onto a surface treated with granular activated carbon and activated carbon fibers, J. Anal. Sci. Technol., 19, 285-289 (2006).
  26. S. J. Gregg and K. S. W. Sing, Adsorption surface area and porosity, Second ed., 195, Academy Press, London (1982).
  27. B. P. Swain, The analysis of carbon bonding environment in HWCVD deposited a-SiC:H films by XPS and Raman spectroscopy, Surf. Coat. Technol., 201, 1589-1593 (2006). https://doi.org/10.1016/j.surfcoat.2006.02.029
  28. R. V. Gelamo, R. Landers, F. P. M. Rouxinol, B. C. Trasferetti, M. A. Bica de Moraes, C. U. Davanzo, and S. F. Durrant, XPS investigation of plasma-deposited polysiloxane films irradiated with Helium Ions, Plasma Process. Polym., 4, 482-488 (2007). https://doi.org/10.1002/ppap.200600100
  29. L. E. Cruz-Barba, S. Manolache, and F. Denes, Novel plasma approach for the synthesis of highly fluorinated thin surface layers, Langmuir, 18, 9393-9400 (2002). https://doi.org/10.1021/la026032c
  30. A. Tressaud, E. Durand, and C. Labrugere, Surface modification of several carbon-based materials: comparison between CF4 rf plasma and direct F2-gas fluorination routes, J. Fluorine Chem., 125, 1639-1648 (2004). https://doi.org/10.1016/j.jfluchem.2004.09.022
  31. R. B. Mathur, V. Gupta, O. P. Bahl, A. Tressaud, and S. Flandrois, Improvement in the mechanical properties of polyacrylonitrile (PAN) -based carbon fibers after fluorination, Synth. Met., 114, 197-200 (2000). https://doi.org/10.1016/S0379-6779(00)00251-4
  32. Y. S. Lee and B. K. Lee, Surface properties of oxyfluorinated PAN-based carbon fibers, Carbon, 40, 2461-2468 (2002). https://doi.org/10.1016/S0008-6223(02)00152-5
  33. C. L. Mangun, K. R. Benak, J. Economy, and K. L. Foster, Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia, Carbon, 39, 1809-1820 (2001). https://doi.org/10.1016/S0008-6223(00)00319-5
  34. M. J. Jung, J. W. Kim, J. S. Im, S. J. Park, and Y. S. Lee, Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination, J. Ind. Eng. Chem., 15, 410-414 (2009). https://doi.org/10.1016/j.jiec.2008.11.001
  35. J. Jang and H. Yang, The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites, J. Mater. Sci., 35, 2297-2303 (2000). https://doi.org/10.1023/A:1004791313979
  36. T. Nakajima, V. Gupta, Y. Ohzawa, M. Koh, R. N. Singh, A. Tressaud, and E. Durand, Electrochemical behavior of plasma-fluorinated graphite for lithium ion batteries, J. Power Sources, 104, 108-114 (2002). https://doi.org/10.1016/S0378-7753(01)00895-3
  37. D. Y. Kim, S. J. In, and Y. S. Lee, Effect of Fluorination and Ultrasonic Washing Treatment on Surface Characteristic of Poly(ethylene terephthalate), Polymer(Korea), 37, 316-322 (2013).
  38. L. Zhang and Y. Zhang, Adsorption characteristics of hexavalent chromium on HCB/$TiO_2$, Appl. Surf. Sci., 316, 649-656 (2014). https://doi.org/10.1016/j.apsusc.2014.08.045
  39. A. Bismarck, R. Tahhan, J. Springer, A. Schulz, T. M. Klapotke, H. Zell, and W. Michaeli, Influence of fluorination on the properties of carbon fibres, J. Fluorine Chem., 84, 127-134 (1997). https://doi.org/10.1016/S0022-1139(97)00029-8

Cited by

  1. Adsorption Characteristics of Chromium Ion at Low Concentration Using Oxyfluorinated Activated Carbon Fibers vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1050
  2. Adsorption Characteristics of Toluene Gas Using Fluorinated Phenol-based Activated Carbons vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1083
  3. Enhancement of Nitrate Removal Ability in Aqueous Phase Using Ulmus davidiana Bark for Preventing Eutrophication vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1086
  4. Mechanical and Thermal Properties of Epoxy Composites Reinforced Fluorinated Illite and Carbon Nanotube vol.27, pp.3, 2016, https://doi.org/10.14478/ace.2016.1033
  5. 새집증후군 유발 벤젠가스 흡착에 미치는 활성탄소섬유의 함산소불소화 영향 vol.29, pp.3, 2018, https://doi.org/10.14478/ace.2018.1007
  6. Nitrate removal from water phase using Robinia pseudoacacia bark for solving eutrophication vol.36, pp.9, 2015, https://doi.org/10.1007/s11814-019-0331-x
  7. Nitrate removal from water phase using Robinia pseudoacacia bark for solving eutrophication vol.36, pp.9, 2015, https://doi.org/10.1007/s11814-019-0331-x
  8. 활성탄소섬유에 도입된 산소작용기가 유독성 화학작용제 감응특성에 미치는 영향 vol.30, pp.6, 2019, https://doi.org/10.14478/ace.2019.1082